

Managing Infrastructure with Puppet

Managing Infrastructure
with Puppet

James Loope

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Managing Infrastructure with Puppet
by James Loope

Copyright © 2011 James Loope. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Teresa Elsey
Proofreader: Teresa Elsey

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
June 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Managing Infrastructure with Puppet, the image of an English setter, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30763-9

[LSI]

1307370214

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . vii

1. Baby Steps to Automation . 1
Getting the Software 1
Introducing Puppet 1

Putting the Pieces Together 2
Getting Started 3

Files and Packages 5
Services and Subscriptions 7
Exec and Notify 7
Facts, Conditional Statements, and Logging 9

The Puppet Master 10

2. Puppeteering . 15
Defines 15
Inheritance and Parameterized Classes 15
Virtual Resources 17
Variables 18
Templates 18

3. Who Needs LDAP? . 21
Building the Framework 21
Declaring Users 23
Throw Away the Handwritten Notebooks 24

4. MCollective . 25
Getting the Software 25

ActiveMQ 25
MCollective Server 26
MCollective Client 27

MCollective Commands 28

v

Preface

This book is for anyone using or considering Puppet as a systems automation tool.
Readers of this book should be familiar with Linux systems administration and basic
Ruby. I’ll cover the basics of using Puppet manifests for configuration management and
techniques for executing and managing those configurations with MCollective and
Facter. I’ll often make suggestions that assume you are managing a virtualized infra-
structure, but virtualization is not necessary to reap the benefits of this software.

Software
This book is focused on Puppet 2.6.1 with Facter 1.5.6, and the MCollective version
used is 1.0.1. Because of the very active development of all of these products, concepts
and examples may not apply to earlier versions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

vii

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Managing Infrastructure with Puppet by
James Loope (O’Reilly). Copyright 2011 James Loope, 978-1-449-30763-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

viii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920020875/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | ix

http://oreilly.com/catalog/0636920020875/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Baby Steps to Automation

Puppet is a configuration management framework with an object-oriented twist. It
provides a declarative language syntax and an abstraction layer that allow you to write
heavily reusable and understandable configuration definitions. In this chapter, I’ll cover
the basics of the Puppet programs, the language syntax, and some simple class and
resource definitions.

Getting the Software
A Puppet deployment comes with a couple of pieces of software. For the most part,
these can be installed from your chosen Linux distribution’s package manager. Alter-
natively, you can use the packages or source provided by Puppet Labs at http://www
.puppetlabs.com/misc/download-options/. In my examples, I’ve used Ubuntu Linux
11.04, but the packages are very similar in each distro. There are generally two pack-
ages: the Puppet package itself, which comes with Facter, and the Puppet Master server.
For the purposes of this chapter, the Puppet and Facter package will suffice. When
installed, it will include an init script to start an “agent” daemon at boot, which will
look for a Puppet Master. For simplicity’s sake, we will test manifests from the com-
mand line using the puppet apply command to begin:

• Ubuntu: apt-get install puppet

• Fedora: yum install puppet

• Mac OS X: port install puppet

Introducing Puppet
Puppet helps you organize and execute configuration plans on servers. This is enabled
through a resource abstraction layer that allows you to address the different configu-
rable components of your system as generic objects. In the Puppet view, a server is a
collection of resource objects that have a set of particular attributes that describe how
that object looks.

1

http://www.puppetlabs.com/misc/download-options/
http://www.puppetlabs.com/misc/download-options/

It is your job to build a catalog of resource declarations that will tell Puppet how those
resources should look when properly configured. When Puppet implements a catalog,
it compares the existing resources on the server to the ones that you have defined in
your descriptions. It then decides on a set of changes that need to occur to bring the
catalog state into agreement with your descriptions. The execution is idempotent,
meaning that only the changes needed to bring the state into agreement with the de-
scription will be made. The entire catalog can be run over and over again without
causing deviation from the described state.

These resource descriptions are made in a Domain Specific Language implemented in
Ruby. This means that the syntax is often similar to Ruby, but you cannot simply write
Ruby code in a Puppet manifest and have it executed. In fact, the language is declarative,
rather than imperative like Ruby. With Puppet, you say how you want things to look,
as opposed to describing what should be done to make them look that way. It’s Puppet’s
job to know how to make that description reality.

Putting the Pieces Together
So Puppet lets us describe our server configurations and then goes off and does all of
the work for us. But how does that happen? There are a couple different ways that
Puppet can manage your systems, depending on your scale and needs.

Puppet

The first piece is the Puppet program itself. It’s an executable Ruby program that has
the majority of Puppet’s functionality rolled up and made accessible via the command
line. With the Puppet program, you can syntax check your Puppet code, apply the
resources to a machine manually, describe the current state of the world as seen by the
abstraction layer, and get some documentation of Puppet’s workings.

Puppet Master

When we need to apply our Puppet configurations to a large number of servers, it
becomes laborious to log in to each machine, copy our configurations to it, and execute
the Puppet command against them. We are better served by keeping all of our config-
urations in a central location, defining which configurations apply to which servers,
and then letting Puppet do the work of pulling the configurations from the repository
and applying them. To enable this client-server behavior, Puppet has a network daemon
called the Puppet Master.

The Puppet program can be run in a daemonized mode by the server init and is then
referred to as a Puppet agent. The agents talk to the Puppet Master over client-certificate
authenticated SSL and the master hands out their configuration catalog. In its default
configuration, the agents work in a polling mode and check in for catalog updates every
30 minutes. This allows us to store our configurations in a central location without

2 | Chapter 1: Baby Steps to Automation

having to worry about keeping all of our systems catalogs in sync through some out-
of-band means.

Getting Started
Once Puppet is installed, you will have the puppet command at your disposal. The first
thing you should do is run puppet describe --list. This will provide a list of the avail-
able resource “types” you have to work with out of the box:

:> puppet describe --list
 These are the types known to puppet:
augeas - Apply the changes (single or array of changes ...
computer - Computer object management using DirectorySer ...
cron - Installs and manages cron jobs
exec - Executes external commands
file - Manages local files, including setting owners ...
filebucket - A repository for backing up files
group - Manage groups
host - Installs and manages host entries
k5login - Manage the `
macauthorization - Manage the Mac OS X authorization database
mailalias - Creates an email alias in the local alias dat ...
maillist - Manage email lists
mcx - MCX object management using DirectoryService ...
mount - Manages mounted filesystems, including puttin ...
nagios_command - The Nagios type command
nagios_contact - The Nagios type contact
nagios_contactgroup - The Nagios type contactgroup
nagios_host - The Nagios type host
nagios_hostdependency - The Nagios type hostdependency
nagios_hostescalation - The Nagios type hostescalation
nagios_hostextinfo - The Nagios type hostextinfo
nagios_hostgroup - The Nagios type hostgroup
nagios_service - The Nagios type service
nagios_servicedependency - The Nagios type servicedependency
nagios_serviceescalation - The Nagios type serviceescalation
nagios_serviceextinfo - The Nagios type serviceextinfo
nagios_servicegroup - The Nagios type servicegroup
nagios_timeperiod - The Nagios type timeperiod
notify - Sends an arbitrary message to the agent run-t ...
package - Manage packages
resources - This is a metatype that can manage other reso ...
schedule - Defined schedules for Puppet
selboolean - Manages SELinux booleans on systems with SELi ...
selmodule - Manages loading and unloading of SELinux poli ...
service - Manage running services
ssh_authorized_key - Manages SSH authorized keys
sshkey - Installs and manages ssh host keys
stage - A resource type for specifying run stages
tidy - Remove unwanted files based on specific crite ...
user - Manage users
whit - The smallest possible resource type, for when ...
yumrepo - The client-side description of a yum reposito ...

Getting Started | 3

zfs - Manage zfs
zone - Solaris zones
zpool - Manage zpools

We’ll primarily be concerned with the file, exec, cron, user, group, and package types.
In addition to these built-in types, a large variety of user-contributed modules add
functionality for nearly every commonly used configuration scenario. Documentation
of the built-in types can be found on the Puppet Labs documentation site at http://docs
.puppetlabs.com/references/2.6.0/type.html.

To get some detail about each of these resource types, you can use puppet describe
type. This will output Puppet’s documentation on that particular resource type in-
cluding parameters and often usage examples as well:

:> puppet describe host

host
====
Installs and manages host entries. For most systems, these
entries will just be in `/etc/hosts`, but some systems (notably OS X)
will have different solutions.

Parameters

- **ensure**
 The basic property that the resource should be in. Valid values are
 `present`, `absent`.

- **host_aliases**
 Any aliases the host might have. Multiple values must be
 specified as an array.

- **ip**
 The host's IP address, IPv4 or IPv6.

- **name**
 The host name.

- **target**
 The file in which to store service information. Only used by
 those providers that write to disk.

Providers

parsed

puppet describe type -s will give you a less verbose description. This
is useful if you just want to know the correct name of a parameter with-
out having to grep through pages of text.

4 | Chapter 1: Baby Steps to Automation

http://docs.puppetlabs.com/references/2.6.0/type.html
http://docs.puppetlabs.com/references/2.6.0/type.html

You can also use Puppet to make queries to the resource abstraction layer and return
the current state of things on a system. This makes reproducing a particular configu-
ration on an existing system easy when there is a supported resource type. The com-
mand for this is puppet resource type name. Here is an example query using the host
resource:

:> puppet resource host

host { 'example.example.com':
 host_aliases => ['example'],
 target => '/etc/hosts',
 ip => '10.0.1.101',
 ensure => 'present'
}
host { 'localhost':
 target => '/etc/hosts',
 ip => '127.0.0.1',
 ensure => 'present'
}

:> puppet resource host example.example.com

host { 'example.example.com':
 host_aliases => ['example'],
 target => '/etc/hosts',
 ip => '10.0.1.101',
 ensure => 'present'
}

Resource types are the building blocks of Puppet configurations and most of your time
will be spent using them or writing new types to suit your needs. Let’s start with a
simple declaration of a package resource.

Files and Packages
This first statement declares that the package ntp should be installed and that the file
ntp.conf should be defined with the given contents and permissions at the path /etc/
ntp.conf, but only after the package ntp is installed. You can go ahead and test this out
(on a test system!) by saving the above text to test.pp and executing
puppet apply test.pp. When this manifest is run against a blank system, the agent will
check for the existence of an ntp package and install it if necessary. Then the file
at /etc/ntp.conf will be installed if it doesn’t exist or overwritten with the content speci-
fied if it differs:

package { 'ntp': ensure => installed }

file { 'ntp.conf':
 path => '/etc/ntp.conf',
 mode => 640
 content => '
 driftfile /var/lib/ntp/ntp.drift
 statistics loopstats peerstats clockstats

Getting Started | 5

 filegen loopstats file loopstats type day enable
 filegen peerstats file peerstats type day enable
 filegen clockstats file clockstats type day enable
 server 0.pool.ntp.org
 server 1.pool.ntp.org
 restrict -4 default kod notrap nomodify nopeer noquery
 restrict -6 default kod notrap nomodify nopeer noquery
 restrict 127.0.0.1
 restrict ::1
 ',
 require => Package[ntp],
}

A few notes here about the syntax: The capitalization of type in resources is important.
You can see that when the resources file and package are declared, they are not capi-
talized, but when the file resource references the ntp package, it is capitalized. Always
capitalize the first letter in the type when you are referring to a resource that you have
declared elsewhere, but do not capitalize the type in the declaration itself. Also notice
that the package declaration at the top is a sort of shortened form, leaving out line
breaks and the comma at the end of the single parameter. The last comma is optional
on a parameter list, but it is generally included in the full form.

The path, mode, and content parameters are fairly mundane, but the require parameter
is special magic. The Puppet agent doesn’t have any innate sense of order of execution
when it is run on a manifest or set of manifests. Things will happen in random sequence
unless constrained by some dependencies. require is one of those dependencies. The
above statement specifies that the file definition ntp.conf requires that the package
ntp be installed before it is created. Conversely, we could have specified in the package
declaration for ntp that it be run before => File['ntp.conf']. Next, we’ll look at a
slightly more streamlined implementation:

package { 'ntp': ensure => '1:4.2.6.p2+dfsg-1ubuntu5' }

file { '/etc/ntp.conf':
 mode => '640',
 owner => root,
 group => root,
 source => '/mnt/nfs/configs/ntp.conf',
 require => Package[ntp],
 }

The most obvious change here is that we’ve moved the file content to an external source.
We’ve told Puppet to go and look in /etc/nfs/configs for a file named ntp.conf and put
it in /etc/ntp.conf. For the moment, we’ll use an NFS mount to distribute our configu-
ration files. In later examples, we can use Puppet’s built-in artifice for that purpose. It’s
good practice to specify both file permissions and ownership in your manifests, as well
as package versions. I’ve replaced the ensure value with an explicit ntp package version.
Puppet is intended to be used to make configuration changes as well as to ensure the
correctness of configurations. You can think of it both as a deployment script and an
auditing tool; by being explicit with your definitions, you can be very confident that

6 | Chapter 1: Baby Steps to Automation

your deployment will always work the same way. Finally, I’ll note that this file resource
lacks an explicit path parameter. This is because, in Puppet, each type has a parameter
that defaults to the resource name. This is referred to as the namevar, and for the file
type, it is the source.

Services and Subscriptions
Let’s add a watchdog to ensure that the ntp daemon that we’ve installed is actually
running. This will give us some insurance that the proper services have been started,
but by no means should it be considered a replacement for a service manager daemon.

I’ve added a service definition that subscribes to the ntp package and its configuration
file. On execution, this definition will look in the process table for the pattern “ntpd”.
If it fails to find a match for the pattern, Puppet will start the ntp service to ensure that
it is running. It also holds a subscription to the ntp package and the file at /etc/
ntp.conf. If we later change the config file or update the package version, Puppet will
restart the service automatically:

package { 'ntp': ensure => '1:4.2.6.p2+dfsg-1ubuntu5' }

file { '/etc/ntp.conf':
 mode => 640
 owner => root,
 group => root,
 source => '/mnt/nfs/configs/ntp.conf',
 require => Package[ntp],
 }

service { "ntp":
 ensure => running,
 enable => true,
 pattern => 'ntpd',
 subscribe => [Package["ntp"], File["/etc/ntp.conf"]],
}

Make sure to test the behavior of the service you are managing. It may
be innocuous to restart ntp when the config changes, but it’s an ugly
mess when you push a change that, unforeseen, restarts your production
database.

Exec and Notify
Subscribing a service to a file is very convenient, but what if we need to do something
more explicit when a file resource changes? I’ll use a postfix transport map as an ex-
ample. When this file is updated, I want to run postmap to compile the transport.db file.

In this example, I’ve specified an exec resource. This is the “brute force” resource in
Puppet. You can use it to execute commands and shell scripts of your choosing, but
there is an important caveat. The command must be idempotent. This means that your

Getting Started | 7

system configuration must be able to cope with having the command run over and over
again. An exec type resource will generally be run on every Puppet run. The following
example specifies that the command should not run unless the subscription to the /etc/
transport file is changed and a refresh is triggered. This is accomplished with the refre
shonly parameter. Any exec can be refreshed either by a subscription or a notification.
Notification works in the reverse of a subscription:

file { "/etc/postfix/transport":
 mode => 640
 owner => root,
 group => postfix,
 source => '/mnt/postfix/configs/transport',
 }
exec { "postmap /etc/postfix/transport":
 subscribe => File["/etc/postfix/transport"],
 refreshonly => true,
 }

Here we have the file resource notifying the exec of a change. Note that notify implies
the behavior that would be seen with a before parameter and subscribe implies the
ordering of a require parameter. In this example, the file will be created before the exec
is run, and in the former example, the exec requires that the file be run first:

file { "/etc/postfix/transport":
 mode => 640
 owner => root,
 group => postfix,
 source => '/mnt/postfix/configs/transport',
 notify => Exec["postmap /etc/postfix/transport"],
 }
exec { "postmap /etc/postfix/transport":
 refreshonly => true,
 }

There are a couple of scenarios where you might want to use an exec, but only when
some other condition requires it. Exec can be used to generate a file; for example, if I
wish to fetch a configuration file that I’ve published on a web server.

In the first example, Puppet understands that the result of the exec is to create the file
listed in the creates parameter. This exec will only be run if that file doesn’t exist. The
second example has the same effect, but it does so using a more customizable condition.
The command will only be run if the exit status of the command in the onlyif parameter
is zero. Nonzero status will cause the exec to be skipped:

exec { 'curl http://example.com/config/my.conf -o "/etc/myapp/my.conf"':
 creates => "/etc/myapp/my.conf",
 }

exec { 'curl http://example.com/config/my.conf -o "/etc/myapp/my.conf"':
 onlyif => "test ! -e /etc/myapp/my.conf",
 }

8 | Chapter 1: Baby Steps to Automation

Exec is very powerful and it has plenty of appropriate uses. It is not
advisable, however, to treat every problem as a potential nail for this
particular hammer. An exec is difficult to make platform-agnostic, and
it generally solves only one particular problem. In a case where no ex-
isting Puppet abstraction does what you need, it might be more useful
to dig around in the community modules for an adaptable function. You
could even write your own.

Facts, Conditional Statements, and Logging
It’s time to begin talking about what Puppet is doing when it executes these definitions.
Each type has a set of “provider” backends that specify what to do with all of the
parameters we’ve given it. Each type also has a specified default provider, depending
on the nature of the machine you are executing on. In the package definition for ntp
we have not told Puppet how to install the package or what commands to use. Instead
it knows that we are on an Ubuntu system and has a specified default provider of “apt”.
The providers can be explicitly passed in a parameter such as provider => apt,, but
this is generally unnecessary and even undesirable. If you were writing Puppet auto-
mation for a heterogeneous environment with both CentOS and Ubuntu hosts, it would
benefit you to allow Puppet to make the choice.

It’s a great habit to write your manifests to be as operating system in-
dependent as you can manage. Not only will it help make your system
more versatile, but it will make it convenient for others in the commun-
ity to reuse when you graciously contribute it back!

This begs the question: How does Puppet know what OS it’s running on? The answer
lies with the facter command. Go ahead and execute facter --puppet and inspect the
results. You’ll see that Facter knows a lot about your system configuration. Facter
comes with a wide range of “facts” defined that describe all different parts of your
system. To ascertain what OS it’s running on, Puppet uses the Facter library and looks
up the $operatingsystem fact. These facts are also available to us in the manifests them-
selves. If we would rather make explicit decisions about what to do in different situa-
tions (like on different operating systems), we can do that with facts.

In this example, I’ve added a selector operation into the source parameter. This specifies
that if the $operatingsystem fact is Ubuntu, we should use the source file at /mnt/nfs/
configs/ubuntu-ntp.conf; else we should use the default source file. Classic if-else and
case statements are also allowed:

package { 'ntp': ensure => '1:4.2.6.p2+dfsg-1ubuntu5' }

file { '/etc/ntp.conf':
 mode => '640',
 owner => root,
 group => root,

Getting Started | 9

 source => $operatingsystem ? {
 'Ubuntu' => '/mnt/nfs/configs/ubuntu-ntp.conf',
 default => '/mnt/nfs/configs/default-ntp.conf',
 },
 require => Package[ntp],
 }

service { "ntp":
 ensure => running,
 enable => true,
 pattern => 'ntpd',
subscribe => [Package["ntp"], File["/etc/ntp.conf"]],
 }

Here we’ve made a simple decision tree that prints out a notice depending on the OS
type and version reported by Facter. Notices can be useful for logging of Puppet runs
and reporting on exceptional conditions. Puppet can be very verbose about what
changes it’s made, but custom logging is convenient:

if $operatingsystem == 'Ubuntu' {
 case $operatingsystemrelease {
 '11.04': { notice("Natty Narwahl") }
 '10.10': { notice("Maverick Meerkat") }
 '10.04': { notice("Lucid Lynx") }
 }
} else {
 notice("We're not on Ubuntu!")
}

With these basic tools alone, we have enough to begin writing some convenient system
installation scripts. That would let us build up a big manifest full of resource declara-
tions and decision structures and then apply them to a system with Puppet. This manual
execution is useful for writing and testing Puppet manifests, but as we’ll see in the next
chapter, we can let the servers configure themselves instead.

The Puppet Master
Running a central Puppet Master server will allow us to build configurations that are
specific to a particular system and then hand them out to be executed on demand. It
can be a central repository for the configuration of all servers in your data center, al-
lowing for the centralized deployment of updates and applications.

Once the Puppet Master is installed, you’ll have an empty Puppet repository in /etc/
puppet. When the Puppet Master starts up, the first file it loads is /etc/puppet/manifests/
site.pp. Generally this file will include a nodes.pp file as well as set some default pa-
rameters. nodes.pp will tell the Puppet Master how to decide what classes it should
apply to a system, called a node, when it checks in.

10 | Chapter 1: Baby Steps to Automation

The Puppet Master and agent communicate over tcp port 8140. Make
sure that any applicable firewall settings allow communication on that
port between the two.

Let’s step through how to set up a node definition and apply a class to it with a central
Puppet Master rather than by manually applying the manifest.

First, you’ll need to have both agent and master installed. For simplicity’s sake, these
can be on the same system. Then set up a simple /etc/puppet/manifests/site.pp and
nodes.pp.

This site.pp includes our nodes.pp and sets up a couple of defaults. The first of these is
the filebucket. When Puppet makes some change to the filesystem, such as overwriting
a config file with an update, it will make a backup of the original. When we define a
filebucket on our Puppet Master server (which we assume to have the hostname pup-
pet.example.com), we can then tell all the file type resource declarations to default their
backup to that bucket. The way that I’ve set up that default here is called a metapara-
meter. When I declare a capitalized file resource with no title, the parameters I specify
for it will become the default for that resource type. I’ve also specified a metaparameter
default for the path of the exec resource type. Exec is used to execute arbitrary com-
mands from the agent and it is convenient to have a standard default path set to look
for executables:

site.pp
import "nodes"

filebucket { main: server => "puppet.example.com" }

defaults
File { backup => main }
Exec { path => "/usr/bin:/usr/sbin/:/bin:/sbin" }

In this example, I’ve defined a node explicitly as puppet.example.com and also as a
default. The Puppet Master matches nodes based upon their hostnames and will fall
back to a default node declaration if a matching node is not found. In this case, either
way, the apps::ntp class will be applied to the node:

nodes.pp

node default {
 include apps::ntp
 }

node "puppet.example.com" {
 include apps::ntp
 }

The Puppet Master | 11

Modules for Organization
The Puppet structure that stores sets of related classes is called a module. The Puppet
Master has an autoloader that expects your classes to be in certain subdirectory struc-
tures of the /etc/modules directory. /etc/puppet/modules/mymodule/manifests should
contain the init.pp file for your mymodule class and any imports it may have. Files that
the class will distribute should live in /etc/puppet/modules/mymodule/files, and ERB
templates in /etc/puppet/modules/mymodule/templates.

Now that we’ve told our Puppet Master how to identify our agent and what to do with
it, we need to put the ntp manifest that we created earlier into the apps::ntp class. This
way, when the agent runs it will execute our ntp installation just as it did when it was
applied with the puppet apply command. We’ll put the class in /etc/puppet/modules/
apps/init.pp.

You’ll notice that the source parameter has changed for our ntp.conf file. I’ve defined
a string here that points to a place where our Puppet server expects module files to be
kept. This puppet:///modules/apps/ntp/ntp.conf location maps to the /etc/puppet/
modules/apps/files/ntp/ntp.conf location on our Puppet Master. This allows us to
distribute files from the master to the clients without having to jump through any extra
hoops, such as setting up nfs. Make sure to copy the ntp.conf file to the proper place
on the master before continuing:

apps/init.pp
class apps::ntp {
 package { 'ntp': ensure => '1:4.2.6.p2+dfsg-1ubuntu5' }

 file { '/etc/ntp.conf':
 mode => '640',
 owner => root,
 group => root,
 source => "puppet:///modules/apps/ntp/ntp.conf",
 require => Package[ntp],
 }

 service { "ntp":
 ensure => running,
 enable => true,
 pattern => 'ntpd',
 subscribe => [Package["ntp"], File["/etc/ntp.conf"]],
 }
}

With our node defined and importing the ntp class that we’ve written, we can
now test out the agent. On the Puppet agent node, run
sudo puppetd --test --noop --server puppet.example.com. This will tell the agent to
run without daemonizing into the background (--test) and without actually modifying
anything (--noop). The first run will not obtain a configuration from the Puppet Master
because the agent has not yet been authenticated. It did, however, leave its certificate

12 | Chapter 1: Baby Steps to Automation

on the master for inspection. The next step in getting our agent and master talking is
to have the Puppet Master sign our agent’s SSL certificate. This initial authentication
step is done with the puppetca command. On the Puppet Master, run
sudo puppetca -la. This will list all of the certificates in our Puppet Master’s certificate
store. Certificates that are signed will have a + in front of them, and unsigned certificates
will not. You should see a certificate for your agent that is not yet signed. To sign it,
simply run sudo puppetca -sa. This will sign all the outstanding requests and allow
those agents to talk to the master.

You can define client node names in the /etc/puppet/autosign.conf file in
the format agenthost.example.com or even *.example.com. Names
matching these patterns will be signed automatically by the master.

At this point, we should have a fully functional master and agent pair. The client
certificate is signed, the node has a definition, and there is a class for the ntp
installation assigned to it. Let’s prove that it works by running
sudo puppetd --test --server puppet.example.com on our client. You should see the
agent run through our manifest and install ntp.

Congratulations, you’ve taken a big step toward implementing a scalable configuration
management architecture. Some deployments will need more complicated logic than
packages and configuration files, but there are plenty of resource types, plug-ins, and
examples to help you out. In the next chapter, we’ll look at the more advanced features
of Puppet that will let you take these simple configuration definitions and apply them
in a larger-scale fashion.

Puppet in the Ubuntu Cloud
If you’re using Ubuntu virtual images (on Amazon AWS or Ubuntu Enterprise Cloud),
you will have a neat feature called cloud-init. Cloud-init provides a boot hook that can
consume data from an input on instance launch and do things like install packages or
execute scripts. On your instance there will be an example at /usr/share/doc/cloud-init/
examples/cloud-config-puppet.txt that describes how to install Puppet at boot and con-
tact a Puppet Master:

puppet:
 conf:
 agent:
 server: "puppetmaster.example.com"
 certname: "myinstance.example.com"

At the simplest, all that needs to be specified in this file is your Puppet server and the
node name to identify the new instance (cert name).

The Puppet Master | 13

CHAPTER 2

Puppeteering

Before we can get into a full-scale example, we need to add more tools to our Puppet
workbench. Puppet provides several layers of abstraction to give you a variety of options
for structuring configurations.

Defines
In this example, I’ve defined a type called yellifmissing, which takes a parameter
$path. Then I can instantiate an instance of yellifmissing called pathnumber1 and pass
the path parameter /tmp/filenumber1. Then I can do it again. Each of these resource
declarations will email me about the specified missing file. Using a defined type, I can
compartmentalize and duplicate blocks of logic, similar to an instance class in most
object-oriented languages:

define yellifmissing ($path) {
 exec { mailaboutit:
 command => "echo 'OhNoes!' | mail -s '$name is missing' admin@example.com",
 unless => "test -f $path",
 }
 }

yellifmissing { pathnumber1: path => '/tmp/filenumber1' }
yellifmissing { pathnumber2: path => '/tmp/filenumber2' }

Inheritance and Parameterized Classes
As we saw in the ntp example, classes are great for organizing our configurations, but
they can also enhance the reusability of our code. Classes in Puppet, unlike define types,
are not like their instanceable namesake in other object-oriented programming lan-
guages. They will take parameters and can even inherit structure from other classes,
but only one class of a particular name can exist on each node.

We can build a base class that installs our Apache2 package and sets up a service to
manage it. We can then inherit from the base and add a couple of special-purpose

15

classes for an Apache with SSL and Apache with PHP. This helps to reduce duplication
in our code and makes future changes less onerous:

class http-server {
 package { "apache2": ensure => installed }

 service { "apache2":
 ensure => running,
 enable => true,
 pattern => "apache2",
 subscribe => Package["apache2"],
 }
 }

class https-server inherits http-server {
 exec { "a2enmod ssl":
 creates => "/etc/apache2/mods-enabled/ssl.load",
 notify => Service["apache2"],
 }
 }

class http-php-server inherits http-server {
 package { "libapache2-mod-php5": ensure => installed }

 exec { "a2enmod php5":
 creates => "/etc/apache2/mods-enabled/php5.load",
 notify => Service["apache2"],
 }

 file { "/etc/php5/apache2/php.ini":
 source => "puppet:///modules/apps/php5/php.ini",
 notify => Service["apache2"],
 }
 }

We can also pass parameters into classes when we include them in a node. Say we need
to install different package versions on different systems. We can build a class that
accepts a parameter $version and then passes that on to a package resource inside.

Here I’ve built a class called ruby that accepts a parameter named version that has a
default value of ‘1.8’. Then I’ve declared the ruby class in my example node, passing
the version ‘1.9.1’. If I omit the version parameter, the package will be installed with
the default value, but I am otherwise allowed to override the version with whatever I
choose:

class ruby ($version = '1.8') {
 $package_list = ["ruby$version",
 "ruby$version-dev",
 "rubygems$version",
 "libopenssl-ruby$version",]

 package { $package_list:
 ensure =>installed,
 }

16 | Chapter 2: Puppeteering

}

node "test.example.com" {
 class { 'apps::ruby':
 version => "1.9.1",
 }
}

In the last example, I built an array of package names and passed them
into a package resource. This is an example of a custom variable decla-
ration.

Virtual Resources
Resources in Puppet can only be declared once per client configuration. This can make
managing resources that relate to multiple configurations complicated. To alleviate this
issue, we have the virtual resource. When marked with a @ prefix, a resource can be
declared, but not yet applied to the client. When we want to apply it to a particular
client, it must be realized first.

I’ve declared three virtual users: bob, alice, and eve, each of which has a different group
membership. If I’d like to realize one of these users, I could use the realize
User[username] mechanism. It could be tedious to realize each of your users in this
fashion. In order to realize virtual resources in groups, specified by their attributes, we
can use collections. The last two statements are collections; each is a collection of users
defined by their membership in a particular group. The first collection will contain
alice and eve and the second will contain all three:

@user { bob:
 ensure => present,
 groups => ["mail", "web"],
 }

@user { alice:
 ensure => present,
 groups => ["db", "web"],
 }

@user { eve:
 ensure => present,
 groups => ["db", "web", "mail", "admin"],
 }

User <| group == db |>

User <| group == web |>

Virtual Resources | 17

Variables
Variables are denoted by a $ prefix and can be declared as arrays or hashes. They can
be scoped locally to a class or globally if declared outside a class. Class-scoped variables
are also available publicly by qualifying their parent class:

class classone {
 $variableone = 'test'
 $variabletwo = ['foo', 'bar', 'baz', 'qux']
 $variablethree = { foo => 'bar', baz => 'qux' }

 }
class classtwo {
 $variableone = $classone::variableone
 $variabletwo = $classone::variabletwo[1]
 $variablethree = $classtwo::variablethree[foo]
 }

This can be useful in some circumstances, but it is somewhat difficult to ensure pre-
dictable behavior, as the values are dependent on the order of evaluation of the two
classes. If you need to use a variable from one class in another, be sure that you can
guarantee the order in which they are evaluated.

Puppet also supports an extensive set of comparison and arithmetic op-
erators (even Backus-Naur Form!) for expressions as variable values. See
the Puppet language guide at http://docs.puppetlabs.com/guides/lan
guage_guide.html for complete documentation.

Templates
Often you’ll want to maintain configuration files for applications that are different
between servers. If you have a couple of configurations, it’s easy enough to maintain
multiple files, but what if you have a very large number of differing configurations? We
can manage this situation by writing ERB templates and populating the templates with
node-specific information. This is done in Puppet with the template() function:

file { "apache-site":
 path => "/etc/apache2/sites-available/$fqdn",
 require => Package["apache2"],
 content => template("apache-site.erb"),
 notify => Exec["a2ensite"],
}

exec { "a2ensite $fqdn":
 notify => Service["apache2"],
 creates => "/etc/apache2/sites-enabled/$fqdn",
}

Here we have a file resource that creates an Apache config file named by the fqdn var-
iable. We’ll assume that Facter is populating this variable with the fully qualified

18 | Chapter 2: Puppeteering

http://docs.puppetlabs.com/guides/language_guide.html
http://docs.puppetlabs.com/guides/language_guide.html

domain name of our server. The file contents are generated by an ERB template and
then it notifies an exec that enables the site and notifies Apache to restart. Next we’ll
write our template and place it in the expected location at /etc/puppet/templates/apache-
site.erb:

<VirtualHost *:80>
 DocumentRoot /var/www/
 ServerName <%= name %>
 <Directory /var/www/>
 allow from all
 Options -Indexes
 </Directory>
</VirtualHost>

This is just a normal Apache vhost stanza, with the exception of the inline included
name variable. All variables in the current scope are available to you in this manner and
out-of-scope variables in other classes can be accessed by this lookupvar function, like
so: scope.lookupvar('externalclass::myvariable'). Injecting variables into config file
templates like this will let us drastically reduce the number of individual configuration
files we need to maintain.

Documentation for the ERB templating system can be found at http://
www.ruby-doc.org/stdlib/libdoc/erb/rdoc/, and there are plenty of online
tutorials on complex templating.

I’ve tried to give you a few real-world examples of how to implement the various features
of Puppet, but the applications are vast and varied. I suggest that you take a while to
peruse the community repository of Puppet modules at http://forge.puppetlabs.com/.
There are plenty of great patterns of implementation and organization in these projects,
and you may even come across an out-of-the-box solution to a problem of your own.

Templates | 19

http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/
http://forge.puppetlabs.com/

CHAPTER 3

Who Needs LDAP?

For many years I struggled with this question: “How do I effectively manage access
control to Linux servers?” There are many options, including LDAP, Kerberos KDC,
and the like, but I disliked each of them for one reason or another. Centralized auth is
prone to failure and proper redundancy is painful to manage. Often password auth is
well managed, but key distribution is difficult, or vice versa. With Puppet, I found a
beautiful alternative. We can use Puppet to manage users and groups and distribute
public keys. It can even enforce file and directory permissions and set password hashes.
Gone are the days of writing big ugly scripts to push users and keys out to your whole
farm of servers. We’ll see how to accomplish this in a less painful manner using Puppet.

Building the Framework
First, we’ll need a framework that can build user accounts in a repeatable fashion given
a set of user attributes. We’ll use a definition to make a reusable structure that can
implement the user type repeatedly with different inputs.

There is a lot going on in this snippet, so I’ll step through it point by point:

• We’ve set up a class called rubyshadow that declares a package resource to install
libshadow for Ruby. This is a prerequisite that Puppet will need before it can man-
age passwords in the user type.

• Next we declare a define that takes a bunch of arguments describing our user and
set a custom variable $username to the name of the resource, for clarity’s sake.

• Then a user type declaration is made, passing the parameters from the define in to
describe the user we want. The minimum member declaration specifies that the
user can be a member of groups outside of this declaration and Puppet will not
remove any groups added to the user manually.

• Finally, we ensure the ownership of the user’s home and add the .ssh directory and
populate the authorized_keys. This will allow us to manage the user’s login cre-
dentials to our servers:

21

modules/users/manifests/init.pp

imports
import "people"

class rubyshadow {
 package { "libshadow-ruby1.8":
 ensure => installed,
 }
}

define useraccount ($ensure = present, $uid, $pgroup = users,
$groups, $password, $fullname, $homefs, $shell) {
 # Grab the username from the resource name
 $username = $name
 # define the user
 user { $username:
 ensure => $ensure,
 uid => $uid,
 gid => $pgroup,
 groups => $groups,
 listitemship => minimum,
 comment => $fullname,
 home => "${homefs}/$username",
 shell => $shell,
 allowdupe => false,
 password => $password,
 }
 # Ensure the ownership and perms of the user home
 file { "${homefs}/${username}":
 ensure => directory,
 owner => $home_owner,
 group => $home_group,
 mode => 750,
 require => User["${username}"],
 }
 # Create a dir for the ssh pubkey
 file { "${homefs}/${username}/.ssh":
 ensure => directory,
 owner => $home_owner,
 group => $home_group,
 mode => 700,
 require => File["${homefs}/${username}"],
 }
 # Add the users pubkeys
 file { "${homefs}/${username}/.ssh/authorized_keys":
 ensure => present,
 owner => $home_owner,
 group => $home_group,
 mode => 600,
 require => File["${homefs}/${username}/.ssh"],
 source => "puppet:///modules/users/${username}/.ssh/authorized_keys",
 }

}

22 | Chapter 3: Who Needs LDAP?

Declaring Users
In this file, we’ve created a class called people that includes our rubyshadow class, sets
up a couple of default values, and checks the home directory for sanity. Then we create
a virtual resource named alice from our defined useraccount type. Alice has a couple
of group memberships and her password parameter is supplied with a hash. This hash
can either be mined out of a shadow file or generated with the mkpasswd utility. Bob is
also present, and he’s a member of the db group:

modules/users/people.pp

class people {
 # include our rubyshadow class
 include rubyshadow
 # set some defaults
 $shell = "/bin/bash"
 $homefs = "/home"
 # make sure that /home is correct
 file { $homefs:
 ensure => directory,
 owner => "root",
 group => "root",
 mode => 2755
 }

 @useraccount { "alice":
 ensure => "present",
 uid => "1001",
 pgroup => "users",
 groups => ["db", "web", "admin"],
 fullname => "Alice",
 homefs => $homefs,
 shell => $shell,
 password => '6V38meAAms5qFW$iTX0EpsGGlWxqkVByPw75zF8QbVNMTLPyY8Hk6RykfTDR
 cCTegRtjCpssZPJsUXRJJihgWHX.a0xaeuszjPii0',
 }

 @useraccount { "bob":
 ensure => "present",
 uid => "1002",
 pgroup => "users",
 groups => ["db"],
 fullname => "Bob",
 homefs => $homefs,
 shell => $shell,
 password => '6CiljlJAsBzc.fm7Q$dlo0/DsoVUD.MBeItUPrb8m5TkRmFSpQZP3smK9yTFV
 dIyn4ib54PvohmkSn93WvPKUIXwODEUIjumCmsQ7rd0',
 }
}

I’ve made Alice and Bob virtual resources here, because I may not want to have user-
accounts on all of my nodes. If I were to have declared a real resource, every node that
includes the people class would have had her user created. This way, I can realize only

Declaring Users | 23

the users in the web group on nodes A.example.com and both users in the web and db
groups on B.example.com.

It may seem obvious, but it must be said: Your Puppet manifests need
to be kept secure. They will often contain secrets such as user password
hashes and database credentials. Even if you can distribute those pieces
out of band, the classes themselves are a road map to your system con-
figuration and would be a security breach should they find a way out of
your organization.

In this example, Alice will have an account on A.example.com and both Alice and Bob
will have users created on B.example.com. In this way, we can distribute users with ssh
keys and privilege credentials to our servers in a uniform and automated manner:

class webusers {
 Useraccount <| groups == "web" |>
 }
class dbusers {
 Useraccount <| groups == "db" |>
 }
node "A.example.com" {
 include webusers
 }
node "B.example.com" {
 include webusers
 include dbusers
 }

Throw Away the Handwritten Notebooks
Now that you’ve learned some Puppet and implemented an automation that does
something useful, I’d like to talk about what it all means in the real world. Configuration
management has been around for a long time, but its nature is changing. When we
used to talk about configuration management, it involved checklists and difficult to
test scripts. Often the policy documents regarding these topics were where 90% of the
effort landed, and even those were not well adhered to. In the new structure that modern
automation provides us, the system configuration can be treated like code. We can put
it in version control, write functional testing suites for it, and QA it just like application
releases. Configurations can have releases that relate to application code releases in
meaningful ways, and bugs are easier to identify because we have explicit records of
changes. So throw away the handwritten server log, and stop making cowboy changes
to production servers. There is a better way.

24 | Chapter 3: Who Needs LDAP?

CHAPTER 4

MCollective

Puppet is not the end of this journey. We can abstract even further if we begin to talk
about pools of servers and virtual instances. What if we have a cluster of application
nodes that need to be managed as groups or if we need reporting of Facter variables
from all of the nodes that include a certain Puppet class? What do we do if Apache
needs a kick on 25 instances out of 1000? MCollective can do these things and more.

MCollective uses a publish/subscribe message bus to distribute commands to systems
in parallel. It’s used to push requests or commands out to all of your systems at once,
allowing the MCollective server to decide which of the messages it should execute,
based on a set of filters in the message. A good analogue of this is an IRC chat service.
We can chat in a channel and receive all the messages, but messages that are intended
for us will have our name attached to them.

The messages that an MCollective server consumes are then passed on to agent modules
that consume the message parameters and then do some work. Agents exist for all sorts
of behaviors, such as managing running services; running Puppet; managing packages,
processes, and files; and even banning IP addresses with iptables. Beyond this, the
agents are fairly simple to write using SimpleRPC.

Getting the Software
MCollective installation is not as simple as Puppet was. We need to set up a Stomp
messaging server and configure the MCollective server on each of our hosts before we
can start using it.

ActiveMQ
ActiveMQ is Apache’s Java messaging server. We’ll need to install the Sun Java Run-
time, get the ActiveMQ package, and configure it. If you’re running Ubuntu, the pack-
age sun-java6-jre can be downloaded from the partner repository. You can download
an ActiveMQ tar from http://activemq.apache.org/activemq-542-release.html.

25

http://activemq.apache.org/activemq-542-release.html

Once you have Java installed and the tarball extracted, you’ll need to edit the conf/
activemq.xml file and add some authentication details to it. I’ll include an example
below; the pertinent portions being the creation of an authorization user for MCollec-
tive and the MCollective topic. These are necessary to allow MCollective servers and
client to talk to one another. You’ll need these credentials for your MCollective con-
figuration as well:

<!---- SNIP ----->

<plugins>
 <statisticsBrokerPlugin/>
 <simpleAuthenticationPlugin>
 <users>
 <authenticationUser username="mcollective" password="secrets"
 groups="mcollective,everyone"/>
 <authenticationUser username="admin" password="moresecrets"
 groups="mcollective,admin,everyone"/>
 </users>
 </simpleAuthenticationPlugin>
 <authorizationPlugin>
 <map>
 <authorizationMap>
 <authorizationEntries>
 <authorizationEntry queue=">" write="admins" read="admins" admin="admins" />
 <authorizationEntry topic=">" write="admins" read="admins" admin="admins" />
 <authorizationEntry topic="mcollective.>" write="mcollective"
 read="mcollective" admin="mcollective" />
 <authorizationEntry topic="mcollective.>" write="mcollective"
 read="mcollective" admin="mcollective" />
 <authorizationEntry topic="ActiveMQ.Advisory.>" read="everyone"
 write="everyone" admin="everyone"/>
 </authorizationEntries>
 </authorizationMap>
 </map>
 </authorizationPlugin>
</plugins>

<!---- SNIP ----->

You can now start up ActiveMQ with the command bin/activemq start.

MCollective Server
The MCollective “server” is the part that you’ll need to deploy on all of your nodes.
The client is a sort of command console that sends messages to the servers. The instal-
lation of MCollective itself is fairly straightforward and has packages available for most
distributions. You’ll need at least one client and one server installed in order to execute
commands. Alternatively, there is a community Puppet module that can be used for
installation of MCollective and distribution of the accompanying plug-ins:

26 | Chapter 4: MCollective

• MCollective downloads: http://www.puppetlabs.com/misc/download-options/

• MCollective Puppet module: https://github.com/mikepea/puppet-module-mcollec
tive

Once it’s installed, you’ll need to edit the /etc/mcollective/server.cfg and /etc/mcollective/
client.cfg files, entering the MCollective user’s password that you specified in the ac-
tivemq configuration in the plugin.stomp.password field and specify your Stomp host-
name in the plugin.stomp.host field. The plugin.psk secret must match between the
server and client, as it is used for messaging encryption. This config assumes that you
have Puppet installed and looks for the class file at the default location and sets the fact
source to Facter:

/etc/mcollective/server.cfg
topicprefix = /topic/mcollective
libdir = /usr/share/mcollective/plugins
logfile = /var/log/mcollective.log
loglevel = info
daemonize = 1

Plugins
securityprovider = psk
plugin.psk = mysharedsecret

connector = stomp
plugin.stomp.host = stomp.example.com
plugin.stomp.port = 61613
plugin.stomp.user = mcollective
plugin.stomp.password = secret

Facts
factsource = facter
Puppet setup
classesfile = /var/lib/puppet/state/classes.txt

plugin.service.hasstatus = true
plugin.service.hasrestart = true

In order for the Facter fact source to work correctly, you will need to distribute the
Facter plug-in for MCollective to the servers. The plug-in source can be fetched from
GitHub at https://github.com/puppetlabs/mcollective-plugins/tree/master/facts/facter/
and installed to the server under $libdir/mcollective. Remember to restart MCollective
after copying the files so that MCollective will recognize the new agent.

MCollective Client
You’ll need to install and configure the client in the same fashion. Here’s an example
of the client configuration:

topicprefix = /topic/mcollective
libdir = /usr/share/mcollective/plugins
logfile = /dev/null

Getting the Software | 27

http://www.puppetlabs.com/misc/download-options/
https://github.com/mikepea/puppet-module-mcollective
https://github.com/mikepea/puppet-module-mcollective
https://github.com/puppetlabs/mcollective-plugins/tree/master/facts/facter/

loglevel = info

Plugins
securityprovider = psk
plugin.psk = mysharedsecret

connector = stomp
plugin.stomp.host = stomp.example.com
plugin.stomp.port = 61613
plugin.stomp.user = mcollective
plugin.stomp.password = secret

These configuration files contain secrets that can be used to publish
commands onto the MCollective channel. The MCollective servers nec-
essarily run as root and execute with full privileges. It is of utmost im-
portance that access to the secrets and the Stomp server be carefully
controlled.

MCollective Commands
With both the servers and a client configured, we’re ready to start issuing MCollective
commands. Let’s start off with the mc-find-hosts command. When run without any
argument, mc-find-hosts will list all of the MCollective servers that are currently active
and listening:

:> mc-find-hosts
A.example.com
B.example.com
C.example.com
D.example.com

We can also get some information about our individual MCollective nodes. mc-inven
tory will tell us what agents are available on a node, what Puppet classes that node is
a member of, and assuming the Facter module is installed, a list out all of the available
Facter facts about the node:

:> mc-inventory A.example.com

Inventory for A.example.com:

Server Statistics:
 Version: 1.0.1
 Start Time: Fri May 06 11:10:34 -0700 2011
 Config File: /etc/mcollective/server.cfg
 Process ID: 22338
 Total Messages: 143365
 Messages Passed Filters: 75428
 Messages Filtered: 67937
 Replies Sent: 75427
 Total Processor Time: 162.09 seconds
 System Time: 73.08 seconds

28 | Chapter 4: MCollective

Agents:
 discovery filemgr package
 iptables nrpe rpcutil
 process puppetd
 service

Configuration Management Classes:
 ntp php apache2
 mysql-5 varnish

Facts:
 architecture => x86_64
 domain => example.com
 facterversion => 1.5.7
 fqdn => A.example.com
 hostname => A
 id => root
 is_virtual => true
 kernel => Linux
 kernelmajversion => 2.6
 kernelversion => 2.6.35

This is already a useful tool for diagnostics and inventory on all of your Puppet-managed
servers, but MCollective also lets us execute agents on the target systems, filtered by
any of these attributes, facts, agents, or classes. For example, if our servers run Apache
and we need to restart all of the Apaches on all of our servers, we could use the mc-
service agent to do this:

:> mc-service --with-class apache2 apache2 restart

This will place a message on the MCollective message bus that says: “All the servers
with the apache2 Puppet class, use your service agent to restart apache2.” We can even
add multiple filters like the following:

:> mc-service --with-class apache2 --with-fact architecture=x86_64 apache2 restart

This will let us restart Apache on only the 64bit “x86_64” architecture servers that have
the Puppet apache2 class. These sorts of filters make remote execution of tasks on
particular subsets of servers very easy.

Of particular interest to those of us running large infrastructures is MCollective’s built-
in capacity to run the Puppet agent on the servers. Puppet’s client-server model, in its
default configuration, will poll the Puppet Master once every half hour. This is not
convenient, for instance, if you would like to use Puppet to coordinate an application
release on a group of servers. If you would like some control over the sequence and
timing of the Puppet runs, you can use the MCollective puppetd agent and forgo the
polling behavior of the agent daemon. Since Puppet is built in to MCollective, it is not
necessary to run the agent on boot either. So long as MCollective and Puppet are both
installed, we can execute Puppet as we like.

The agent can be downloaded from GitHub at https://github.com/puppetlabs/mcollec
tive-plugins/tree/master/agent/puppetd/ and, as with the Facter plug-in, should be

MCollective Commands | 29

https://github.com/puppetlabs/mcollective-plugins/tree/master/agent/puppetd/
https://github.com/puppetlabs/mcollective-plugins/tree/master/agent/puppetd/

copied to $libdir/mcollective on the servers, preferably using Puppet. Once it’s installed,
you will be able to kick off a Puppet run on all or some of your servers with the following
command:

:> mc-puppetd --with-class example runonce

If you don’t mind the default polling behavior of the Puppet agent, you can also use
the puppetd MCollective agent to selectively enable or disable Puppet on sets of your
instances as well as initiate one-off runs of the agent.

If you still want to have Puppet run on a regular basis to ensure config-
uration correctness, but need to avoid polling “stampedes,” take a look
at the PuppetCommander project at http://projects.puppetlabs.com/
projects/mcollective-plugins/wiki/ToolPuppetcommander. It uses MCol-
lective’s puppetd module to centrally coordinate Puppet runs so as to
avoid overwhelming a Puppet Master. It will also give you the power to
specify which nodes or classes to run automatically.

Finally, there is an mc-rpc command that serves as a sort of metacommand, allowing
access to all of the available agents. We can execute the puppetd agent, for example,
with the following syntax:

:> mc-rpx --agent puppetd --with-class example runonce

Alternatively, we can use mc-rpc to read out the documentation for a particular agent:

:> mc-rpc --agent-help puppetd
SimpleRPC Puppet Agent
======================

Agent to manage the puppet daemon

 Author: R.I.Pienaar
 Version: 1.3-sync
 License: Apache License 2.0
 Timeout: 120
Home Page: http://mcollective-plugins.googlecode.com/

ACTIONS:
========
disable, enable, runonce, status

disable action:

 Disables the Puppetd

 INPUT:

 OUTPUT:
 output:

30 | Chapter 4: MCollective

http://projects.puppetlabs.com/projects/mcollective-plugins/wiki/ToolPuppetcommander
http://projects.puppetlabs.com/projects/mcollective-plugins/wiki/ToolPuppetcommander

 Description: String indicating status
 Display As: Statc
runonce action:

 Initiates a single Puppet run

 INPUT:

 OUTPUT:
 output:
 Description: Output from puppetd
 Display As: Output

status action:

 Status of the Puppet daemon

 INPUT:

 OUTPUT:
 enabled:
 Description: Is the agent enabled
 Display As: Enabled

 lastrun:
 Description: When last did the agent run
 Display As: Last Run

 output:
 Description: String displaying agent status
 Display As: Status

 running:
 Description: Is the agent running
 Display As: Running

You’ve seen the basic features of MCollective in this chapter. It works as a great or-
chestration tool for Puppet, allowing you greater control over your Puppet agents and
more insight into your configurations through Facter. Beyond this, the agents are fairly
simple to write and can be used to accomplish any task that you might want to execute
in a distributed fashion across all or part of your infrastructure. Puppet Labs provides
documentation on extending MCollective with custom agents with SimpleRPC at http:
//docs.puppetlabs.com/mcollective/simplerpc/agents.html.

MCollective Commands | 31

http://docs.puppetlabs.com/mcollective/simplerpc/agents.html
http://docs.puppetlabs.com/mcollective/simplerpc/agents.html

About the Author
James Loope is the operations lead at Janrain. He is a specialist in scalable infrastruc-
ture, virtualization, cloud infrastructure, and computer security.

Colophon
The animal on the cover of Managing Infrastructure with Puppet is an English setter.

The cover image is from Wood’s Animate Creations. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Software
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Baby Steps to Automation
	Getting the Software
	Introducing Puppet
	Putting the Pieces Together
	Puppet
	Puppet Master

	Getting Started
	Files and Packages
	Services and Subscriptions
	Exec and Notify
	Facts, Conditional Statements, and Logging

	The Puppet Master

	Chapter 2. Puppeteering
	Defines
	Inheritance and Parameterized Classes
	Virtual Resources
	Variables
	Templates

	Chapter 3. Who Needs LDAP?
	Building the Framework
	Declaring Users
	Throw Away the Handwritten Notebooks

	Chapter 4. MCollective
	Getting the Software
	ActiveMQ
	MCollective Server
	MCollective Client

	MCollective Commands

