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Abstract - Driven by the desire to facilitate more 
maintainable and robust systems, modern programming 
languages offer explicit constructs to facilitate the handling 
of exceptional events. The use of exceptions is common in 
user space programming, and is an integral part of 
common programming styles and best practices.  In spite of 
this exceptions are rarely used in kernel-space. In fact, 
some operating systems, such as Linux, refrain altogether 
from using modern language constructs.  

We have implemented C++ kernel level run-time support 
for Linux, supporting the full range of C++ language 
abstractions, including run time type checking and 
exception handling.  Through detailed instrumentation we 
show that introducing these mechanisms incurs negligible 
cost to normal program flow.  Moreover, by enhancing the 
user level GNU g++ implementation we have reduced the 
cost of throwing and catching exceptions sufficiently, to 
make their use viable in a variety of in several important 
scenarios.  

1 Introduction 

Exceptions are in common use in user space 
programming. Most modern programming languages 
offer some form of syntactic constructs to handle 
exceptional events, as exemplified by the Java 
programming language. The belief is widespread that the 
use of exceptions leads to more maintainable and robust 
systems; error handling code is separated from the 
normal flow and it can be enforced that all exceptional 
cases will be handled, as for example through the use of 
checked exceptions in Java [1]. Multiple modern 
programming styles and best practices encourage the use 
of exceptions as the vehicle to handle exceptional cases; 
when a function detects an error condition, which it does 
not know how to handle, an exception should be raised. 
Indirect or direct callers of the function set up handlers 
for particular types of exceptions that are caught from 
that function.  

In spite of the common usage of exceptions in user space, 
their use in kernel-space has been limited. In fact, some 
operating systems do not exploit higher level language 
abstractions at all.  In particular the popular Linux 

operating system is written in pure C.  Whereas 
performance issues may negate the use of some modern 
languages such as Java, one of the driving factors behind 
the creation of C++ was for use in writing operating 
systems [2].  Some constructs were specifically 
introduced and designed based on observed patterns – 
and to address problems – in operating systems 
implementations.  Although C++ does not offer strong 
type safety, nor enforce safety properties for example 
assured by Java, C++ offers an array of high level 
language abstractions valuable for the construction of 
operating systems, and provides type safety and compiler 
support far beyond that of C.  In particular, the safety 
provided by language level polymorphism provides 
significant value as polymorphic behavior is widespread 
throughout any operating system.   

In our work on the Pronto software router, we have used 
many of the advanced C++ constructs extensively 
including classes and virtual functions to achieve clarity, 
flexibility and extensibility.  We have shown that these 
benefits come at no performance penalty compared to the 
Linux implementation [3,4].  Our desire to employ the 
full range of C++ abstractions in the kernel and in 
particular to use C++ exceptions in our work on Pronto is 
the driver behind the work presented herein. 

Of course, handling exceptional conditions is relatively 
expensive, regardless of the mechanisms employed for 
implementation.  Substantial fraction of the code in any 
operating system is there to resolve exceptional 
conditions.  Handling such conditions requires i) 
detecting when an exceptional condition occurs, ii) 
determining where (i.e. by whom) such conditions should 
be handled, and finally iii) doing the work needed to 
recover resources and otherwise handle the condition to 
return the operating system to a state from where it is safe 
to resume normal execution.  The cost of the first and the 
last are independent of the mechanisms employed to 
implement the second.  The use of language level 
exception handling translates into machinery providing 
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complete and systematic approach to the second – i.e. to 
identify where a thrown exception should be handled.   

The performance cost of using the language level 
exception machinery must be weighed against both its 
non-performance benefits and the total cost of handling a 
given exceptional condition. Important non-performance 
quality metrics include reliability, robustness, flexibility, 
maintainability and speed of development.  In contrast, 
ad-hoc exception handling patterns common in particular 
in the Linux kernel consist of convoluted traces where 
exceptional function abort is communicated to the caller 
via an exceptional return value.  As detailed below the 
performance overhead of throwing exceptions in C++ is 
appreciable when compared for example to a simple 
return with an integer error code.  However, in many 
cases executing the exception handling code dominates 
the total cost of recovering from an error condition.  In 
those cases the substantial benefits of exceptions warrant 
the relatively small cost.   

However, since throwing a C++ exception is more 
expensive than returning from a function, there are 
clearly cases where using exceptions should be avoided.  
The latter would typically apply when the exception 
handling is trivial and simple return value is appropriate, 
or for exceptions that occur relatively frequently (and 
thus perhaps constitute a branch rather than a true 
exception) or operate on such fine time-scale that even a 
small overhead is a burden.  However, rather than 
voiding the viability of using language level exceptions, 
the added cost instead determines the granularity 
appropriate for the use of exceptions, and/or the rarity at 
which the exceptional case must occur to justify the cost.  
Therefore, an important contribution of this paper is to 
quantify the cost of using the throw/catch mechanism 
with our run-time support, allowing the programmer to 
determine these tradeoffs. 

Exceptions in C++ support polymorphic exception 
handling, and therefore provide for unified exception 
handling even as the kernel functionality is extended.  
Our Pronto kernel supports dynamic introduction of new 
data types into a running kernel, including late binding of 
type specific system calls [4].  However, introducing new 
types, e.g. a new tunneling facility, may introduce new 
types of exception conditions. Introducing 
simultaneously the corresponding new exception type 
(implementing the handler), allows us to handle the new 
exception condition(s) without changing the already 
running code.  We give example of this in Section 5.2.  In 
contrast, traditional ad-hoc methods cannot handle this 
scenario gracefully. 

The primary contribution of this paper is a complete 
kernel level run-time support for C++ in the Linux 
kernel.  In particular our run-time support enables the full 
use of C++ exceptions in the Linux kernel, but notably 
also includes support for global constructors and 
destructors, and dynamic type checking.  Our kernel level 
support is based on open source commodity components, 
specifically the GNU gcc/g++ compiler and its exception 
implementation, the C++ABI version independent 
standard interface.  As such we believe that our approach 
is applicable for other operating systems, but we have not 
verified this.  In particular our optimizations for 
exception handling are platform and OS independent.   

A significant additional contribution is in Section 6 where 
we quantify the cost of the throw/catch mechanism based 
on detailed measurements. We show and quantify a 
number of typical kernel scenarios where the use of 
exceptions is viable and valuable, including a system call 
invocation and use of exceptions in the Linux data 
forwarding path. Our measurements indicate that the 
throwing of exceptions, with the GNU g++ compiler, is 
relatively expensive. However, analyzing the 
implementation, we have identified and implemented 
several optimizations, appropriate for kernel level, 
reducing the cost of throwing exceptions by an order of 
magnitude. We demonstrate that the overhead of 
introducing exceptions does not impede normal flow of 
the program.  We give measurements showing both 
absolute cost of exception handling, and the relative cost 
by comparing it to common exception handling 
functions.   

Although our C++ kernel level run-time support is 
complete in that it supports all C++ facilities, the primary 
complexity, and perhaps controversy, centers on our 
support of exceptions.  The rest of the paper therefore 
mostly discusses that aspect of our library. 

The rest of the paper is organized as follows. In Section 2 
we discuss related work. In Section 3 we discuss our 
kernel level run-time support, diving into the 
implementation og exceptions in Section 4.   In Section 5 
we show examples of practical use of exceptions, in 
particular for use in system calls, and for use in the data 
path of the Pronto Linux based router.  In Section 6 we 
report on our measurements, followed by discussion in 
Section 7.  In Section 8 we conclude.   

2 Related work 

Current approaches to kernel level exception handling 
strongly resemble the state of affairs in the seventy’s 
when research on exceptions and exception handling 



3 

started to emerge.  J. B. Goodenough [5,6] provides an 
excellent overview of the common techniques used for 
error handling, before introduction of exception handling 
mechanisms in programming languages.  These methods 
– employing error codes, separate return values, non-
local goto etc. – are still common at kernel level. The 
same applies for all the issues associated with such ad-
hoc exception handling – issues that ultimately drove 
specific exception handling constructs into modern 
programming languages, and specifically C++. 

Among early programming languages to provide support 
for exceptions were CLU [7,8], PL/1 [9] and Mesa [10]. 
The semantic of exceptions in these languages differs in 
number of areas, including whether handler association is 
static or dynamic, whether resumption is possible at the 
site where the exception was thrown, whether handler 
location is static or dynamic and whether exception can 
be propagated several levels automatically.  

Implementation of exceptions has caused significant 
amount of attention. In Appendix 1 of [11] two 
implementation methods of C++ exceptions are described 
on a high level. Much of that discussion applies to 
languages implementing similar exception model, 
including Java.  The first method employs dynamic 
registration based on the setjmp/longjmp methods, also 
covered in depth in [12].  This approach incurs some 
(albeit small) cost when entering try blocks, but has the 
advantage that it is portable in the sense that it is possible 
to generate ANSI C from a C++ program. The second 
method is based on a table of program counter values that 
map try blocks into program counter values for handlers. 
This method incurs no run-time overhead when entering 
a try block (zero instructions), at the expense however 
that throwing exceptions incurs increased overhead in 
comparison to the setjmp/longjmp method. This table 
driven approach is further detailed in [13,14].  Hewlett-
Packard’s implementation of exception handling for the 
IA-64 based on the table-driven approach is described in 
[15].  The implementation is “in a way that leaves the 
door open for optimizations, even in the presence of 
exceptions” [15] employing optimized stack layouts 
through landing pads similar to ideas presented in [17]. 
The GNU g++ compiler implementation, on which we 
build our run-time library, implements exceptions in a 
similar manner as described in [15]. 

The performance impact of exception handling, and in 
particular the throw/catch mechanism as now used in 
most languages including C++, has been studied 
extensively.  The use of exceptions may introduce 
additional control flows into the program, even for 
procedures that do not use exceptions potentially 

invalidating some conventional optimizations.  However, 
as suggested in [16], accounting for the additional 
semantics may reduce or remove this penalty. The 
additional control flows must be incorporated into the 
basic block model, which puts more constraints on 
register allocation in terms of variable lifetime. However, 
other error-handling techniques, such as checking return 
codes with if-statements, do negatively impact control 
flow. In general the use of exceptions does not inhibit 
compiler optimizations, but does however put more 
requirements on the back-end of the compiler. [17] 
demonstrates how optimized frame layouts through non-
standard calling conventions can be used even with the 
PC-based stack unwinding approach of implementing 
exceptions. 

Qualitative measures have shown that while the effect on 
program size is noticeable (up to 20%), the overall impact 
on run-time performance is small (see for example 
[18,19]).  Our measurements show that compiling our 
run-time support into the kernel results in less than 3% 
performance degradation in the Linux data path.  
Whereas the two methods of implementing exceptions 
described above either optimize the exception handling 
(setjmp/longjmp) or the normal flow, [20] attempts to 
optimize the throwing of exceptions without sacrificing 
the performance in the normal path, based on the 
observation that some Java programs frequently throw 
exceptions. The method of [20] detects hot exception 
paths at runtime, and for those paths it inlines all the 
methods from the thrower to the catcher, into the catcher. 
Finally throws are eliminated by replacing the throw with 
the explicit control flow to the catch. This produces 
significant performance savings. 

Employing language level exception mechanism at kernel 
level has not received substantial attention. Some 
operating systems are written at least partly in C++ but 
generally they do not employ C++ exceptions. SPIN [21], 
written in Modula-3 to provide a higher level of safety for 
kernel extension, uses exceptions, which is an integral 
part of the Modula-3 language. Windows NT provides a 
facility called Structured Exception Handling (SEH) 
[22,23], which can be used in kernel device drivers. 
Although the SEH is similar to C++ exception handling 
but has different semantics.  Interestingly SEH is at the 
core an operating system facility and thus independent of 
any compiler. SEH uses dynamic registration of try-
blocks and thus its usage does affect normal flow. Each 
thread is associated with a stack of exception 
registrations, through the thread information block. 
Conceptually, an entry into a try block pushes an 
exception registration on the stack, although language 
dependent compilers may optimize this – the Microsoft 
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C++ compiler uses one per function. Exception 
registrations contain a function pointer to a handler 
function that returns a value indicating if it wishes to 
handle the exception. In the SEH model, exceptions are 
thrown explicitly with the RaiseException Win32 routine 
and, in contrast to the C++ exception model, exceptions 
in the SEH model are singular integers. However, the 
SEH model also covers processor-level errors, such as 
divide-by-zero, access violations and stack overflows, 
which requires support from the operating system. When 
an exception is raised, either implicitly or explicitly, the 
operating system calls the handler functions on the 
exception registration stack in sequence. Each handler 
function decides whether to handle the exception, to pass 
it through or to resume execution at the point where the 
exception was raised. Thus the SEH model allows 
resumption. One drawback of SEH is that it does not call 
destructors during stack unwinding, however the 
__finally block can be used to clean up resources. The 
Microsoft C++ compiler implements C++ exceptions on 
top of the SEH model and as a consequence the catch(…) 
block under that compiler catches all C++ exceptions as 
well as processor-level errors, such as a segmentation 
fault. Segmentation faults on Linux are not caught when 
compiled with the GNU g++ compiler. 

Exceptions in the context of real-time systems are 
analyzed in [24] in where the authors evaluate an array of 
exception handling implementations against a set of 
requirements deemed essential for real-time systems, 
including predictability. Neither the table-driven 
approach nor the dynamic registration are predictable in 
this sense since they are proportional to the length of the 
calling chain/handler chain, which cannot be predicted 
statically. Since the primary objective is predictability the 
authors are willing to accept cost in the normal flow.  

3 Using the C++ kernel level run-time 
support for Linux 

The new C++ kernel level run-time support for Linux 
provides complete run-time support for C++, including 
support for virtual functions, memory allocation 
operators, global constructors/destructors, dynamic type 
checking and exceptions.  The code is installed by 
applying a patch to the Linux kernel and enables the full 
use of C++ using the GNU g++ compiler. Programmers 
that have used C++ in Linux kernel modules have 
primarily been using classes and virtual functions, but not 
global constructors. dynamic type checking and 
exceptions.  Using even this small part of C++ requires 
each programmer to write some supporting routines. 
Using the rest of C++ includes porting the C++ ABI that 

accompanies GNU g++ to the Linux kernel, and to enable 
global constructors and destructors. 

Using our new C++ kernel level run-time support, 
programming in C++ at kernel level becomes similar to 
programming in user space.  The compiler compiles files 
ending with .cc as C++ file.  However, the Linux kernel 
distribution is written in vanilla C, so typically C++ 
source files do need to include C files.  This introduces a 
problem not commonly encountered in user space, as 
some of the C++ keywords have been used as identifiers 
in some of the Linux header files.  To combat this, we 
have provided two inclusion files – begin_include.h and 
end_include.h, respectively – with our distribution that 
should be used to enclose the Linux C header files, as 
shown in Figure 1.  These two files use #define’s and 
#undef’s, respectively to redefine these identifiers to 
names accepted by the C++ compiler. 

The begin_include/end_include files take care of 
renaming C++ keywords temporarily, such as new and 
virtual, that Linux programmers use as variable names.  It 
is however possible that some of the Linux source 
contains struct initializations that are incompatible with 
C++, which causes problems if such structs compiled 
inside the kernel proper (with the C compiler) need to be 
referenced from the C++ code.  These initializations must 
currently be changed by hand. 

4 Exceptions in the Linux kernel 

The GNU g++ compiler implements exceptions 
according to the table driven approach using the 
application binary interface (ABI).  The (user level) 
implementation of the ABI accompanies the compiler as 
part of the standard run-time library. When using C++ 
exceptions, GNU g++ generates calls to the ABI.  For 
example the throw operator is transformed into a call to 
the ABI function __cxa_allocate_exception followed by 
__cxa_throw. GNU G++ versions 3.x implement the C++ 
ABI specification for IA-64 [25,26]. The aim of the C++ 
ABI specification is to standardize the object layout and 
the interface of the object code to the runtime system. 
Thus code compiled with old versions of the compiler 
should be compatible with newer releases and, more 

 
 
 
 
 
 

Figure 1 – Inclusion from Linux C header files 

#include <begin_include.h> 
#include <linux/module.h> 
#include <linux/kernel.h> 
#include <end_include.h> 
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ambitiously, object code from different compilers should 
be compatible. 

Conceptually GNU g++ stores a table that maps each 
instruction pointer value to register state, using Dwarf2 
[27] to encode the frame info. The Dwarf2 frame info 
table is stored in an interpretive form – instructions must 
be interpreted to compute the register state for a certain 
program counter value – to limit the size of the 
information in the object code. 

The first step in our work to support kernel level 
exceptions is to create and include an implementation of 
the C++ ABI in the kernel. We start by carving out of the 
user level library code the ABI implementation as the 
basis for our implementation.  Simply porting the user 
level code to the kernel level requires some changes. The 
malloc function used to reserve space on the heap for 
exceptions is replaced with the kernel level kmalloc 
function.  The GNU library is thread-safe and uses 
locking to guard certain data structures, with the aid of 
the pthread library. However, the pthread library is not 
available in kernel space we have modified the locking 
mechanism use spinlocks.  

In user space information on active exceptions is kept in a 
thread-local storage.  To achieve this we have added the 
corresponding  structure to the process information block, 
the task_struct.  This is depicted in Figure 2.  This 
structure is strictly speaking only required to be able to 
rethrow exceptions, i.e. to use the throw operator without 
arguments. Thus the above modification to the Linux 
task_struct could be omitted by sacrificing this use of the 
throw operator.  

When creating an ELF executable, GNU g++ secretly 
links two object files at the front and the back, crtbegin.o 
and crtend.o.  This is necessary to ensure that global 
constructors and destructors are run, and that the Dwarf2 
frame info is registered to the C++ ABI, thus enabling 

exceptions. GNU g++ adds initialization code into the 
.init ELF section and cleanup into the .fini section. To 
allow exceptions and global constructors to be used in the 
kernel the Makefile rule for the kernel image and kernel 
modules is modified to link with those two files. 
Furthermore we must manually ensure that the 
initialization routines are called, since the kernel module 
loader in Linux pays no attention to the ELF .init section. 
We accomplished this by clever use of preprocessor 
macros, that change the definition of the module 
initialization functions, module_init and module_exit.  

GNU g++ registers the exception table and the stack 
frame layout on module load, but the user level C++ ABI 
implementation does not process it in any way. Thus the 
first time an exception is thrown in or through a module 
the information must be processed, which includes 
sorting the stack frame info in program counter order 
using heap-sort. This means that throwing the first 
exception is quite expensive.  For our kernel level C++ 
ABI implementation we have opted for processing this 
information at module load. 

These additions to the kernel are available as a kernel 
patch and the size of it is negligible compared to the rest 
of the kernel. Total size of the Linux kernel (excluding 
blanks and comments) is around 4 millions LOC, while 
the size excluding all drivers and including only the i386 
architecture is around 1,2 million LOC. The size of the 
C++ ABI is around 7000 LOC. Compiling the C++ ABI 
into the kernel image, with exceptions and runtime type 
information (RTTI) enabled, increases the kernel image 
by 2%;. Note however that we still compiling most of the 
C files with gcc, which is not emitting exception frame 
info. When compiling the whole kernel with exceptions 
enabled, which makes it is possible to throw exceptions 

struct task {
volatile long state;
struct thread_info *thread_info;
…
siginfo_t *last_siginfo; /* for ptrace use*/

#ifdef CONFIG_CXX_RUNTIME
struct {

void *caughtExceptions;
unsigned int uncaughtExceptions;

} exa_eh_globals;
#endif
};  

Figure 2 - The Linux task struct.  Our changes to 
support exceptions appear inside the #ifdef shown in 
the Figure. 

class OSException
{ 
public: 

char* getMessage(); 
OSException(char* msg,int sev);
int getSeverity(); 
virtual void report();
enum tSeverity {MINOR=1,MAJOR,FATAL}; 

private: 
char* message; 
int severity; 

}; 

class NetworkException : public OSException
{ 

… 
}; 

class ProntoException : public NetworkException
{

… 
};  

Figure 3 - Simple exception hierarchy 
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through the whole kernel, the increase in size of the 
kernel image is around 10%. This code increase will 
however generally not affect the normal flow. Code that 
uses exceptions extensively increases slightly more in 
size.  In extreme cases, when the code does little other 
than exception handling we have observed an increase in 
size for a single object file of up to 40%.  

Evaluation of performance and overheads is given in 
Section 6. 

5 Using kernel level exceptions 

In this section we give few examples of the use of 
exceptions within the Linux kernel.  These examples are 
from our own actual use in our Pronto router project.     

In this example we use as an example class hierarchy, 
depicted in Figure 3, where each exception corresponds 
to a sub-system.  The top-level exception class – 
OSException – consists of a message, severity and a 
virtual method, report, which by default performs a printk 
of the message if the severity is MAJOR or FATAL.  The 
other two exceptions defined, are NetworkException 
derived from OSException, and ProntoException derived 
from NetworkException. 

5.1 System Calls 
The most straightforward use of exceptions in kernel 
space is in system calls. The Pronto architecture 
introduces three new systems calls to the Linux kernel. 
New types of packet processors [4] (an abstract data type 
for processing in the data-path of the Pronto router) can 
be plugged into the operating system at run-time and their 
behavior manipulated through type specific system calls 
that are dynamically linked through virtual functions. To 
promote safety it is beneficial to catch all exceptions 
thrown by packet processors. 

Figure 4 shows the use of exceptions to guard a systems 
call.  In this example the sys_pproc_type_call is the entry 
point from the system call.  It’s only function is to 
dispatch a method invocation to thePProcKType, which 
is an object in a dynamically loaded module.  To guard 
the dispatch, the virtual call is performed inside a try 
block.   

The system call catches all ProntoExceptions and calls 
the virtual function report. The packet processors can 
throw subclasses of ProntoException, and customize the 
report function.  Finally all other exceptions are caught 
with the second clause. This could include processor-
level errors, if the operating system provides support for 

mapping processor level errors into catch-able exceptions 
– a topic that we are currently researching for the Linux 
platform. 

5.2 Using try-blocks in the data path 
The Pronto data path consists of a classifier that maps 
packets to flows.  Each flow is associated with a 
forwarding path consisting of chains of packet 
processors.  Each forwarding path may have multiple 
branches.  Examples of packet processors include basic 
IP forwarding, tunnel entry/exit, NAT functionality, and 
more.  Packet processors are dynamically added to the 
router at run-time.   

Figure 5 shows how we employ exceptions in this critical 
part of the data path.  A try block guards the processing 
of a packet as it is sent through the chain of packet 
processors associated with the flow they belong to 
(identified by the call to the classifier above the try).  As 
in the previous example, there are two catch statements, 
one catching all ProntoExceptions, the other catching all. 

It is worth noting in this example, that as new types of 
packet processors, say for example IPSec tunnel entry, 

asmlinkage int
sys_pproc_type_call(int pptype, int call, void* args) 
{ 

int retval = -ENOSYS; 
try { 

if (thePProcKType) {
retval = thePProcKType->syscall(pptype, call, args); 

} else { 
printk(KERN_ERR "pproc not loaded"); 

} 
} catch(ProntoException & exception) { 

exception.report(); 
} catch(...) { 

printk(KERN_ERR "Unknown Exception occurred"); 
} 
return retval; 

}  

Figure 4 - Using exceptions to guard system call 
dispatch 

int pronto_ip_rcv(struct sk_buff *skb, …) 
{ 

… 
flow = ((classifier_module*)classifier)->lookup(skb); 
if( flow ){

try { 
flow->arrive( skb ); 

} catch(ProntoException & exception) { 
exception.report(); 
kfree_skb(skb); 

} catch(...) { 
printk("Unknown exception occured"); 
kfree_skb(skb); 

} 
}
…

} 

 

Figure 5 - Using exceptions in the Pronto router 
forwarding path 
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are introduced they may in turn introduce new subclasses 
of the ProntoException, defining a new handler (the 
report method).  This way the Pronto data path is capable 
of performing type specific exception handling for new 
dynamically installed types!  

6 Evaluation 

In this section we evaluate our run-time support via 
detailed measurements.  We first discuss the cost of 
dynamic type checking, followed by an in depth 
measurements of the overhead of exceptions.  

Our measurements were performed on an Intel Pentium 
3,996.859 MHz running the Linux 2.6.6 kernel that has 
been patched to include Pronto and the C++ runtime 
library. 

6.1 Dynamic type checking 
The cost of dynamic type checking in C++ is highly 
dependent on the method used to encode the runtime type 
information in the objects. GNU g++ associates with each 
class a type information object that encodes the type of 
the class as a mangled string and puts a pointer to this 
object in the virtual table for the class. GNU g++ uses 
weak symbols to reduce the dynamic type checking to a 
pointer comparison, thus avoiding the more expensive 
string comparison. Each time a class, containing virtual 
functions, is used in a source file, GNU g++ generates the 
virtual table, type information object and type name 
string as weak symbols and the user space linker ensures 
that there is only one copy of this object, which renders 
the simple pointer comparison sufficient. However, the 
kernel module loader, which in the 2.6 versions of the 
kernel is exclusively in kernel space, does not handle 
these weak symbols correctly and always relocates 
references to weak symbols to the weak definition within 
each object file that is being loaded. Therefore multiple 
type information objects may exist for the same class and 
pointer comparison becomes insufficient when doing 
dynamic type check across kernel modules. To avoid this 
overhead we have modified the kernel module loader to 
handle these weak symbols; the first time a weak symbol 
is encountered it is added to the symbol map, and on 
subsequent encounters the relocation is done to the first 
symbol. This modification is included in the C++ kernel-
level library. 

For the purpose of measuring the cost of the dynamic cast 
operator we implemented a class hierarchy, 
A�B�C�D�E where A is the root of the class 
hierarchy, and a method that receives a pointer to A and 
performs a dynamic cast to type B*. This table lists the 

measurements for the dynamic cast operator when 
passing pointers to instances of B, C, D and E 
respectively.  The results are given in Table 1. 

Table 1 - Cost of dynamic cast 

Class Cost 
(�s) 

B 0.11 

C 0.16 

D 0.21 

E 0.26 

The results indicate that the cost of each additional level 
in a class hierarchy is 0.05 �s.  In comparison, when 
using string comparison the cost rises more quickly, and 
is furthermore influenced by the length of the class name 
and common prefixes; by using a common prefix of 2 
characters and increasing the class name to 9 characters 
we measured the cost of dynamic cast using the lowest 
level class (E) to be 0.67 �s.  

6.2 Absolute cost of kernel level exceptions 
For the purpose of measuring the absolute cost of 
throwing an exception, we implemented a kernel module 
that throws an integer out of a function, which is caught 
in the direct caller.  

To put the absolute numbers in context we measured the 
performance of the Linux printk function, which is 
commonly used in exceptional circumstances to 
communicate error messages to users. The time to print a 
string of length 6 – printk(“Error\n”) – was measured to 
be 18.14 �s.   

Although based on the user level implementation 
provided with the GNU g++ distribution our kernel level 
implementation contains a number of important 
optimization.  To appreciate the impact of these 
optimizations, we first discuss the overhead before our 
optimizations, and give the breakdown of the overhead, 
showing where our performance improvements are 
coming from, building up to the conclusion of the 
subsection showing the absolute cost using our optimized 
run-time support.  

Without the optimization the minimum time duration 
from the point of throw to the point of catch measured 
was 12.70 �s. Since our usage of exceptions involves 
throwing objects we also measured the performance of 
throwing the ProntoException mentioned above. The 
time from the throw to the catch increased to 13.08 �s in 
this case, showing relatively little difference in 
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performance when throwing objects compared to an 
integer; the principle difference involves copying of 
larger content to the heap area.  

To target our optimizations we analyzed the 
implementation of exceptions in GNU g++. The 
implementation of exceptions in the C++ ABI in GNU 
C++ can be characterized by three things: Ease of 
debugging, independence of processor architecture and 
independence of programming languages. All of these 
aspects are potentially harmful for performance and, with 
the possible exception of the independence of processor 
architecture. We measured in detail the breakdown of the 
cost of throwing exceptions.  This breakdown is tabulated 
in Table 2. 

Table 2 - Breakdown of cost of throwing an exception 
using the GNU g++ ABI implementation. 

Portion    % 

Allocation and initialization of 
resources 
(__cxa_allocate_exception, 
__cxa_throw) 

3.3 % 

Locating the handler – first phase of 
stack unwinding 
(_Unwind_RaiseException) 

56.5 % 

Actual unwinding – second phase of 
stack unwinding 
(_Unwind_RaiseException_Phase2) 

36.5 % 

Installation of the runtime context at 
handler (uw_install_context) 

2.6 % 

Manipulation of the runtime stack of  
“active” exceptions 
 (__cxa_begin_catch, 
__cxa_end_catch) 

1.1% 

 

From Table 2 we see that the unwinding of the stack 
accounts for 93% of the time. We also observe that the 
stack is unwound two times, both time incurring 
substantial cost. The first phase, the search phase, looks 
for a handler for the exception without restoring the 
unwound state. If a handler is found the second phase, the 
cleanup phase, commences to restore the state to the stack 
frame that contains the handler. The reason for this two-
phased approach is that in the case that no handler is 
found the stack frames have not been destroyed and the 
debugger can inspect the state of the frame that threw the 
exception. However, for our use at kernel level, we don’t 
see this cost justified.  In fact, we feel that even in user 
space the programmer should have the option of having 
the compiler optimize this debugging help out of the 

code.  The first optimization in our run-time support is 
therefore to unwind the stack in one phase. 

The second optimization we performed concerns the 
aspect of the GNU implementation that separates the 
exception library in two disjoint sets – the language 
independent unwind library, and the language specific 
library. The GNU compiler suite implements a set of 
languages, including C++, Ada and Java, all of which 
have exception facilities. The actual unwinding is generic 
for all languages, while the location of a handler within a 
specific function is language specific, customizable 
through a “personality routine” encoded in the Dwarf2 
frame info. The throw operator in C++ is transformed by 
g++ into a call to __cxa_allocate_exception, followed by 
__cxa_throw, and when that function has finished 
initializing the C++ specific parts of the exception object 
the generic _Unwind_RaiseException function is called. 
This means that when the actual unwinding starts there is 
an additional function on the stack that the 
implementation will have to unwind. By manually 
inlining the _Unwind_RaiseException function into the 
__cxa_throw function this is avoided in our library. 

The two above mentioned optimizations brought the 
performance of throwing of an integer through one 
function from 12.70 �s to around 6 �s.  

To enhance the performance further the third 
optimization improves the mechanisms used to search for 
the handler.  When an exception is thrown, the C++ ABI 
needs to locate the Dwarf2 frame descriptor entry for 
each function that the exception goes through, including 
the function where the throw is located as well as the 
function where the exception is caught. The C++ ABI 
accomplishes this by a linear search through a sorted 
linked list of objects representing the main program as 
well as each dynamically linked library (in the Linux 
kernel this corresponds to the kernel image and each 
kernel module) followed by a binary search through an 
array containing the frame descriptor entries sorted by 
program counter. Once the frame descriptor entry has 
been located the Dwarf2 instructions are interpreted to 
compute the frame state for the function at the current 
program counter value. The frame state consists of a state 
for each register that specifies if and where the register 
has been saved, a rule to compute the canonical frame 
address, and a pointer to a “language specific data.”   In 
the case of C++ the language specific data is the 
exception table for the function, if one exists. Our 
optimization caches this frame state data in a hash table, 
indexed by program counter. When an exception is 
thrown the first time through a function, or more 
specifically the first time through a certain place in the 
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function, the frame state is computed and subsequently 
inserted into the hash table. Subsequent throws through 
this place result in a successful lookup in the hash table 
which saves the time to locate the frame descriptor entry 
and the interpretation of the Dwarf2 instructions. Thus, 
the optimization detects the exception paths at runtime 
and caches data to speed up the process. The importance 
of this optimization increases the more exceptions are 
used in the kernel since the time needed to locate the 
frame descriptor entry for a function is proportional to the 
number of modules that use exceptions and the number of 
functions within those modules. 

Further optimizations are possible, for example, stripping 
the implementation of all language independent code and 
or avoiding the allocation of the memory in the kernel-
heap, possibly by allocating special pages for the 
exception structures.  

However with these three optimizations we have manged 
to reduce the the absolute cost of a one level throw from 
12.70 �s to 2.14 �s, or about a tenth of the cost of a trivial 
printk.  As we discuss below this seems quite acceptable 
for exceptional events in a number of  important 
scenarios. 

As expected the cost of exceptions is dependent on the 
number of stack frames that the exception is thrown 
through. Table 3 tabulates how the number of stack 
frames affects the cost of throwing an exception. 

Table 3 - Absolute cost of throwing exceptions 
through a number of stack frames. 

# Stack Frames Cost (�s) 
1 2.14 
2 2.52 
3 2.85 
4 3.21 
5 3.59 

 
We observe that cost increases with each stack frame 
about 0.35 �s.  However, it should be taken into account 
that when using other types of error handling techniques 
the cost also increases with number of stack frames 
traversed.  

For comparison, Table 4, tabulates the same cost before 
our optimizations.  We observe that the increase in cost 
for each stack frame in the GNU g++ implementation 
without our optimizations is around 2.5 �s.  Hence, the 
effect of our optimization is even more impressive when 
throwing the exception through multiple functions.  

Table 4 - Absolute cost of throwing exceptions 
through a number of stack frames without our kernel 

level optimizations. 

# Stack Frames Cost (�s) 
1 12.70 
2 15.43 
3 18.12 
4 20.46 
5 23.09 

 

6.3 The cost of using exceptions in system calls  
For the purpose of measuring the difference of 
implementing a system call with error codes versus an 
implementation that utilizes exceptions we implemented 
a system call in Linux that invokes a virtual function that 
immediately returns an error code, which the calling 
function checks. For comparison we implemented a 
version of the system call where the function throws the 
same error code, which is subsequently caught in the 
callee. The actual measurement is performed in a user 
space program with the clock function, since context 
switches may occur during the measurement. We 
measure the average cost per call when invoking the call 
repeatedly (ten million times) to alleviate the lack of 
precision inherent in the clock function.  

Without exceptions, we measure the average time of the 
execution of the system call to be 0.22 �s.  In comparison 
we measure the average time using exceptions was 2.46 
�s.  The difference is consistent with our observed cost of 
throwing an exception.  

Although this is an order of magnitude difference two 
observations are important.  First, most system calls 
perform more expensive useful functions.  For those 
system calls the 2 �s overhead is small.  Second, if the 
exception is truly an exceptional event, say occurring 
once every 1000 calls the overhead is around 2.3 �s 
compared to 220 �s which is negligible. These 
measurements do however indicate that exceptions 
should not be used gratuitously in these settings and be 
reserved for exceptional events. 

6.4 The cost of using try blocks in the data path 
To test the viability of using exceptions in fine timescale 
intensive workload, we measure the cost of using try 
blocks in the Pronto data path, as shown in the example 
of Section 5.2.  We measure packet latency, using 64 byte 
UDP packages at a rate of 10000 packets per second 
through a router. The router was equipped with a single 
993 MHz Intel Pentium 3 processor, having Intel 
PRO/1000 Gigabit Ethernet interfaces. The interfaces 
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issue DMA directly.  We measure the latency by time-
stamping each packet immediately after the packet is in 
main memory and again just before it is transferred to the 
output card with DMA.  

For comparison we measured the packet latency in the 
unmodified Linux kernel, and the packet latency in that 
scenario was 4.29 �s. Using Pronto (Linux based) router 
compiled without exceptions and RTTI, the observed 
packet latency is 4.24 �s.  Although the difference is 
negligible, it is interesting since Pronto uses classes and 
virtual functions. As we have verified in prior work the 
use of classes and virtual functions does not incur a 
measurable overhead in our scenario. When compiling in 
the full C++ runtime support, with exceptions and RTTI 
and using try-blocks in the Pronto data path, the packet 
latency grows to 4.36 �s – an overhead of 2.8%. This is 
consistent with the results of other writers – adding 
support for exceptions seems to impose a slight runtime 
overhead. Since try-blocks do not emit any code, this can 
only be ascribed to less aggressive (or successful) 
optimizations performed by g++. Using exceptions 
should not have considerable effect on the instruction 
cache in the normal flow, since under optimization level 
O2, g++ positions all catch handlers at the end of each 
method, ensuring that the normal flow is not cluttered 
with exception code. This effect is currently partially 
achieved in the Linux kernel by hand – the normal flow is 
positioned at the beginning of a function, labeled error 
handlers are positioned at the end, and goto statements 
are used in the normal flow to invoke the error handling 
code. 

6.5 Throwing exceptions in the data path 
To measure the cost of throwing exceptions under 
intensive workload on fine timescale, we measure the 
impact on thrown in the data forwarding path of the 
Pronto router.  The setup is as follows.  An exception 
packet processor is configured to throw an exception for 
every packet. The classifier catches the exception which 
it handles by sending the packet to the IP-forward packet 
processors that injects the packet to the device queue of 
the output device.  For comparison the same experiment 

is performed where the first packet processor returns an 
error code rather than throwing the exception. The setup 
is depicted in Figure 6. 

When throwing exceptions per-packet in this setup, we 
measured the packet latency to be 8.8 �s. (Since multiple 
branches are typically used in multicast, the packet is 
copied with the skb_copy function before sending it down 
the second branch, which increases the packet latency). 
Returning only an error code we observe the latency to be 
5.8 �s. The difference is slightly higher than the 
minimum cost of exceptions in the previous subsection, 
or 3 �s.  However, more importantly this cost if of the 
same order as the total latency in normal forwarding 
mode (4.36). Of course this implies that it would be 
unwise to throw an exception for every packet. However, 
even for events that occur once every 100 packets the 
cost of using exceptions would have limited impact on 
router throughput (less than 1%), and is altogether 
negligible for even less frequent events.    

As a related example consider using exceptions for fast 
recovery upon link failures.  

 

Assuming link failures are rare, the overhead on total 
throughput would clearly be negligible.  Even when the 
failure occurs, the overhead of throwing the exception 
would only imply a handful of additional packets lost, 
even for very fast links.  Moreover, in comparison to the 
true cost of handling the exception, routing update, local 
flow state updates on all active flows, the absolute cost of 
the exceptions is negligible. 

Another interesting example to consider is to use 
exceptions to handle exceptional protocol conditions  
where an ICMP message should be generated. In our 
analysis of traffic in our network we determined that the 
volume of ICMP traffic is 1 packet per every 3500 
packets or 0.03%. If the average packet latency is 4 �s, 
the aggregate packet latency is 14 ms and the additional 
overhead of 2 �s is negligible in comparison.  

7 Discussion 

As mentioned before, further optimizations of the 
exception handling mechanisms beyond what we 
describe above are possible although in some cases a 
modification of the compiler would be required. Ideally 

 

Figure 6 - Setup for measuring the cost of throwing 
exceptions in the Pronto data path. 
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the GNU g++ compiler would include our optimizations 
and allow the programmer to turn them on.  Although 
user-level programs tend not to be as time critical, doing 
so would lower the barrier for exceptions and make them 
more useful.    

However, in spite of our optimizations, throwing an 
exception is a relatively expensive operation in relation to 
other atomic constructs, such as function calls and control 
structures. Consequently exceptions should not be used 
gratuitously and be reserved for exceptional events.  

We are interested in investigating the possibility of 
mapping processor-level errors to C++ exceptions, to 
gain this benefit that the Windows SEH has over the C++ 
exception mechanism. The ultimate goal is to build a 
robust pluggable-kernel.  Such mechanism would allow 
us to catch all exceptions originating within the  
pluggable kernel-modules and to remove such modules 
from the kernel to avoid allowing them to crash the 
system.  

8 Summary 

In this paper we have discussed and evaluated our new 
C++ kernel level run-time support for Linux, that allows 
programmers to use the full power of C++ in kernel space 
programming, including global constructors and 
destructors, dynamic type checking and exceptions. Our 
new kernel-patch works without any modification to the 
compiler, and is compiler version-independent, so long as 
g++ adheres to the C++ ABI specification for IA-64; 
indeed we used the 3.4 version of the ABI with the 3.3 
version of the compiler. 

Our run-time support builds on the GNU g++ 
distribution, optimizing the GNU implementation 
reducing the performance overhead by an order of 
magnitude. The cost of exceptions is low in comparison 
to some other error handling operations in the Linux 
kernel, such as the printk function, and viable in many 
situations of interest. 

Finally we have quantified the cost of exceptions which 
serves as an important guide for programmers to 
determine when the use of exceptions can be justified. 
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