
1

Exceptional Kernel
Using C++ exceptions in the Linux kernel

Halldór Ísak Gylfason, Gísli Hjálmtýsson
Department of Computer Science

Reykjavík University
Reykjavík, Iceland

{halldorisak, gisli}@ru.is

Abstract - Driven by the desire to facilitate more
maintainable and robust systems, modern programming
languages offer explicit constructs to facilitate the handling
of exceptional events. The use of exceptions is common in
user space programming, and is an integral part of
common programming styles and best practices. In spite of
this exceptions are rarely used in kernel-space. In fact,
some operating systems, such as Linux, refrain altogether
from using modern language constructs.

We have implemented C++ kernel level run-time support
for Linux, supporting the full range of C++ language
abstractions, including run time type checking and
exception handling. Through detailed instrumentation we
show that introducing these mechanisms incurs negligible
cost to normal program flow. Moreover, by enhancing the
user level GNU g++ implementation we have reduced the
cost of throwing and catching exceptions sufficiently, to
make their use viable in a variety of in several important
scenarios.

1 Introduction

Exceptions are in common use in user space
programming. Most modern programming languages
offer some form of syntactic constructs to handle
exceptional events, as exemplified by the Java
programming language. The belief is widespread that the
use of exceptions leads to more maintainable and robust
systems; error handling code is separated from the
normal flow and it can be enforced that all exceptional
cases will be handled, as for example through the use of
checked exceptions in Java [1]. Multiple modern
programming styles and best practices encourage the use
of exceptions as the vehicle to handle exceptional cases;
when a function detects an error condition, which it does
not know how to handle, an exception should be raised.
Indirect or direct callers of the function set up handlers
for particular types of exceptions that are caught from
that function.

In spite of the common usage of exceptions in user space,
their use in kernel-space has been limited. In fact, some
operating systems do not exploit higher level language
abstractions at all. In particular the popular Linux

operating system is written in pure C. Whereas
performance issues may negate the use of some modern
languages such as Java, one of the driving factors behind
the creation of C++ was for use in writing operating
systems [2]. Some constructs were specifically
introduced and designed based on observed patterns –
and to address problems – in operating systems
implementations. Although C++ does not offer strong
type safety, nor enforce safety properties for example
assured by Java, C++ offers an array of high level
language abstractions valuable for the construction of
operating systems, and provides type safety and compiler
support far beyond that of C. In particular, the safety
provided by language level polymorphism provides
significant value as polymorphic behavior is widespread
throughout any operating system.

In our work on the Pronto software router, we have used
many of the advanced C++ constructs extensively
including classes and virtual functions to achieve clarity,
flexibility and extensibility. We have shown that these
benefits come at no performance penalty compared to the
Linux implementation [3,4]. Our desire to employ the
full range of C++ abstractions in the kernel and in
particular to use C++ exceptions in our work on Pronto is
the driver behind the work presented herein.

Of course, handling exceptional conditions is relatively
expensive, regardless of the mechanisms employed for
implementation. Substantial fraction of the code in any
operating system is there to resolve exceptional
conditions. Handling such conditions requires i)
detecting when an exceptional condition occurs, ii)
determining where (i.e. by whom) such conditions should
be handled, and finally iii) doing the work needed to
recover resources and otherwise handle the condition to
return the operating system to a state from where it is safe
to resume normal execution. The cost of the first and the
last are independent of the mechanisms employed to
implement the second. The use of language level
exception handling translates into machinery providing

2

complete and systematic approach to the second – i.e. to
identify where a thrown exception should be handled.

The performance cost of using the language level
exception machinery must be weighed against both its
non-performance benefits and the total cost of handling a
given exceptional condition. Important non-performance
quality metrics include reliability, robustness, flexibility,
maintainability and speed of development. In contrast,
ad-hoc exception handling patterns common in particular
in the Linux kernel consist of convoluted traces where
exceptional function abort is communicated to the caller
via an exceptional return value. As detailed below the
performance overhead of throwing exceptions in C++ is
appreciable when compared for example to a simple
return with an integer error code. However, in many
cases executing the exception handling code dominates
the total cost of recovering from an error condition. In
those cases the substantial benefits of exceptions warrant
the relatively small cost.

However, since throwing a C++ exception is more
expensive than returning from a function, there are
clearly cases where using exceptions should be avoided.
The latter would typically apply when the exception
handling is trivial and simple return value is appropriate,
or for exceptions that occur relatively frequently (and
thus perhaps constitute a branch rather than a true
exception) or operate on such fine time-scale that even a
small overhead is a burden. However, rather than
voiding the viability of using language level exceptions,
the added cost instead determines the granularity
appropriate for the use of exceptions, and/or the rarity at
which the exceptional case must occur to justify the cost.
Therefore, an important contribution of this paper is to
quantify the cost of using the throw/catch mechanism
with our run-time support, allowing the programmer to
determine these tradeoffs.

Exceptions in C++ support polymorphic exception
handling, and therefore provide for unified exception
handling even as the kernel functionality is extended.
Our Pronto kernel supports dynamic introduction of new
data types into a running kernel, including late binding of
type specific system calls [4]. However, introducing new
types, e.g. a new tunneling facility, may introduce new
types of exception conditions. Introducing
simultaneously the corresponding new exception type
(implementing the handler), allows us to handle the new
exception condition(s) without changing the already
running code. We give example of this in Section 5.2. In
contrast, traditional ad-hoc methods cannot handle this
scenario gracefully.

The primary contribution of this paper is a complete
kernel level run-time support for C++ in the Linux
kernel. In particular our run-time support enables the full
use of C++ exceptions in the Linux kernel, but notably
also includes support for global constructors and
destructors, and dynamic type checking. Our kernel level
support is based on open source commodity components,
specifically the GNU gcc/g++ compiler and its exception
implementation, the C++ABI version independent
standard interface. As such we believe that our approach
is applicable for other operating systems, but we have not
verified this. In particular our optimizations for
exception handling are platform and OS independent.

A significant additional contribution is in Section 6 where
we quantify the cost of the throw/catch mechanism based
on detailed measurements. We show and quantify a
number of typical kernel scenarios where the use of
exceptions is viable and valuable, including a system call
invocation and use of exceptions in the Linux data
forwarding path. Our measurements indicate that the
throwing of exceptions, with the GNU g++ compiler, is
relatively expensive. However, analyzing the
implementation, we have identified and implemented
several optimizations, appropriate for kernel level,
reducing the cost of throwing exceptions by an order of
magnitude. We demonstrate that the overhead of
introducing exceptions does not impede normal flow of
the program. We give measurements showing both
absolute cost of exception handling, and the relative cost
by comparing it to common exception handling
functions.

Although our C++ kernel level run-time support is
complete in that it supports all C++ facilities, the primary
complexity, and perhaps controversy, centers on our
support of exceptions. The rest of the paper therefore
mostly discusses that aspect of our library.

The rest of the paper is organized as follows. In Section 2
we discuss related work. In Section 3 we discuss our
kernel level run-time support, diving into the
implementation og exceptions in Section 4. In Section 5
we show examples of practical use of exceptions, in
particular for use in system calls, and for use in the data
path of the Pronto Linux based router. In Section 6 we
report on our measurements, followed by discussion in
Section 7. In Section 8 we conclude.

2 Related work

Current approaches to kernel level exception handling
strongly resemble the state of affairs in the seventy’s
when research on exceptions and exception handling

3

started to emerge. J. B. Goodenough [5,6] provides an
excellent overview of the common techniques used for
error handling, before introduction of exception handling
mechanisms in programming languages. These methods
– employing error codes, separate return values, non-
local goto etc. – are still common at kernel level. The
same applies for all the issues associated with such ad-
hoc exception handling – issues that ultimately drove
specific exception handling constructs into modern
programming languages, and specifically C++.

Among early programming languages to provide support
for exceptions were CLU [7,8], PL/1 [9] and Mesa [10].
The semantic of exceptions in these languages differs in
number of areas, including whether handler association is
static or dynamic, whether resumption is possible at the
site where the exception was thrown, whether handler
location is static or dynamic and whether exception can
be propagated several levels automatically.

Implementation of exceptions has caused significant
amount of attention. In Appendix 1 of [11] two
implementation methods of C++ exceptions are described
on a high level. Much of that discussion applies to
languages implementing similar exception model,
including Java. The first method employs dynamic
registration based on the setjmp/longjmp methods, also
covered in depth in [12]. This approach incurs some
(albeit small) cost when entering try blocks, but has the
advantage that it is portable in the sense that it is possible
to generate ANSI C from a C++ program. The second
method is based on a table of program counter values that
map try blocks into program counter values for handlers.
This method incurs no run-time overhead when entering
a try block (zero instructions), at the expense however
that throwing exceptions incurs increased overhead in
comparison to the setjmp/longjmp method. This table
driven approach is further detailed in [13,14]. Hewlett-
Packard’s implementation of exception handling for the
IA-64 based on the table-driven approach is described in
[15]. The implementation is “in a way that leaves the
door open for optimizations, even in the presence of
exceptions” [15] employing optimized stack layouts
through landing pads similar to ideas presented in [17].
The GNU g++ compiler implementation, on which we
build our run-time library, implements exceptions in a
similar manner as described in [15].

The performance impact of exception handling, and in
particular the throw/catch mechanism as now used in
most languages including C++, has been studied
extensively. The use of exceptions may introduce
additional control flows into the program, even for
procedures that do not use exceptions potentially

invalidating some conventional optimizations. However,
as suggested in [16], accounting for the additional
semantics may reduce or remove this penalty. The
additional control flows must be incorporated into the
basic block model, which puts more constraints on
register allocation in terms of variable lifetime. However,
other error-handling techniques, such as checking return
codes with if-statements, do negatively impact control
flow. In general the use of exceptions does not inhibit
compiler optimizations, but does however put more
requirements on the back-end of the compiler. [17]
demonstrates how optimized frame layouts through non-
standard calling conventions can be used even with the
PC-based stack unwinding approach of implementing
exceptions.

Qualitative measures have shown that while the effect on
program size is noticeable (up to 20%), the overall impact
on run-time performance is small (see for example
[18,19]). Our measurements show that compiling our
run-time support into the kernel results in less than 3%
performance degradation in the Linux data path.
Whereas the two methods of implementing exceptions
described above either optimize the exception handling
(setjmp/longjmp) or the normal flow, [20] attempts to
optimize the throwing of exceptions without sacrificing
the performance in the normal path, based on the
observation that some Java programs frequently throw
exceptions. The method of [20] detects hot exception
paths at runtime, and for those paths it inlines all the
methods from the thrower to the catcher, into the catcher.
Finally throws are eliminated by replacing the throw with
the explicit control flow to the catch. This produces
significant performance savings.

Employing language level exception mechanism at kernel
level has not received substantial attention. Some
operating systems are written at least partly in C++ but
generally they do not employ C++ exceptions. SPIN [21],
written in Modula-3 to provide a higher level of safety for
kernel extension, uses exceptions, which is an integral
part of the Modula-3 language. Windows NT provides a
facility called Structured Exception Handling (SEH)
[22,23], which can be used in kernel device drivers.
Although the SEH is similar to C++ exception handling
but has different semantics. Interestingly SEH is at the
core an operating system facility and thus independent of
any compiler. SEH uses dynamic registration of try-
blocks and thus its usage does affect normal flow. Each
thread is associated with a stack of exception
registrations, through the thread information block.
Conceptually, an entry into a try block pushes an
exception registration on the stack, although language
dependent compilers may optimize this – the Microsoft

4

C++ compiler uses one per function. Exception
registrations contain a function pointer to a handler
function that returns a value indicating if it wishes to
handle the exception. In the SEH model, exceptions are
thrown explicitly with the RaiseException Win32 routine
and, in contrast to the C++ exception model, exceptions
in the SEH model are singular integers. However, the
SEH model also covers processor-level errors, such as
divide-by-zero, access violations and stack overflows,
which requires support from the operating system. When
an exception is raised, either implicitly or explicitly, the
operating system calls the handler functions on the
exception registration stack in sequence. Each handler
function decides whether to handle the exception, to pass
it through or to resume execution at the point where the
exception was raised. Thus the SEH model allows
resumption. One drawback of SEH is that it does not call
destructors during stack unwinding, however the
__finally block can be used to clean up resources. The
Microsoft C++ compiler implements C++ exceptions on
top of the SEH model and as a consequence the catch(…)
block under that compiler catches all C++ exceptions as
well as processor-level errors, such as a segmentation
fault. Segmentation faults on Linux are not caught when
compiled with the GNU g++ compiler.

Exceptions in the context of real-time systems are
analyzed in [24] in where the authors evaluate an array of
exception handling implementations against a set of
requirements deemed essential for real-time systems,
including predictability. Neither the table-driven
approach nor the dynamic registration are predictable in
this sense since they are proportional to the length of the
calling chain/handler chain, which cannot be predicted
statically. Since the primary objective is predictability the
authors are willing to accept cost in the normal flow.

3 Using the C++ kernel level run-time
support for Linux

The new C++ kernel level run-time support for Linux
provides complete run-time support for C++, including
support for virtual functions, memory allocation
operators, global constructors/destructors, dynamic type
checking and exceptions. The code is installed by
applying a patch to the Linux kernel and enables the full
use of C++ using the GNU g++ compiler. Programmers
that have used C++ in Linux kernel modules have
primarily been using classes and virtual functions, but not
global constructors. dynamic type checking and
exceptions. Using even this small part of C++ requires
each programmer to write some supporting routines.
Using the rest of C++ includes porting the C++ ABI that

accompanies GNU g++ to the Linux kernel, and to enable
global constructors and destructors.

Using our new C++ kernel level run-time support,
programming in C++ at kernel level becomes similar to
programming in user space. The compiler compiles files
ending with .cc as C++ file. However, the Linux kernel
distribution is written in vanilla C, so typically C++
source files do need to include C files. This introduces a
problem not commonly encountered in user space, as
some of the C++ keywords have been used as identifiers
in some of the Linux header files. To combat this, we
have provided two inclusion files – begin_include.h and
end_include.h, respectively – with our distribution that
should be used to enclose the Linux C header files, as
shown in Figure 1. These two files use #define’s and
#undef’s, respectively to redefine these identifiers to
names accepted by the C++ compiler.

The begin_include/end_include files take care of
renaming C++ keywords temporarily, such as new and
virtual, that Linux programmers use as variable names. It
is however possible that some of the Linux source
contains struct initializations that are incompatible with
C++, which causes problems if such structs compiled
inside the kernel proper (with the C compiler) need to be
referenced from the C++ code. These initializations must
currently be changed by hand.

4 Exceptions in the Linux kernel

The GNU g++ compiler implements exceptions
according to the table driven approach using the
application binary interface (ABI). The (user level)
implementation of the ABI accompanies the compiler as
part of the standard run-time library. When using C++
exceptions, GNU g++ generates calls to the ABI. For
example the throw operator is transformed into a call to
the ABI function __cxa_allocate_exception followed by
__cxa_throw. GNU G++ versions 3.x implement the C++
ABI specification for IA-64 [25,26]. The aim of the C++
ABI specification is to standardize the object layout and
the interface of the object code to the runtime system.
Thus code compiled with old versions of the compiler
should be compatible with newer releases and, more

Figure 1 – Inclusion from Linux C header files

#include <begin_include.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <end_include.h>

5

ambitiously, object code from different compilers should
be compatible.

Conceptually GNU g++ stores a table that maps each
instruction pointer value to register state, using Dwarf2
[27] to encode the frame info. The Dwarf2 frame info
table is stored in an interpretive form – instructions must
be interpreted to compute the register state for a certain
program counter value – to limit the size of the
information in the object code.

The first step in our work to support kernel level
exceptions is to create and include an implementation of
the C++ ABI in the kernel. We start by carving out of the
user level library code the ABI implementation as the
basis for our implementation. Simply porting the user
level code to the kernel level requires some changes. The
malloc function used to reserve space on the heap for
exceptions is replaced with the kernel level kmalloc
function. The GNU library is thread-safe and uses
locking to guard certain data structures, with the aid of
the pthread library. However, the pthread library is not
available in kernel space we have modified the locking
mechanism use spinlocks.

In user space information on active exceptions is kept in a
thread-local storage. To achieve this we have added the
corresponding structure to the process information block,
the task_struct. This is depicted in Figure 2. This
structure is strictly speaking only required to be able to
rethrow exceptions, i.e. to use the throw operator without
arguments. Thus the above modification to the Linux
task_struct could be omitted by sacrificing this use of the
throw operator.

When creating an ELF executable, GNU g++ secretly
links two object files at the front and the back, crtbegin.o
and crtend.o. This is necessary to ensure that global
constructors and destructors are run, and that the Dwarf2
frame info is registered to the C++ ABI, thus enabling

exceptions. GNU g++ adds initialization code into the
.init ELF section and cleanup into the .fini section. To
allow exceptions and global constructors to be used in the
kernel the Makefile rule for the kernel image and kernel
modules is modified to link with those two files.
Furthermore we must manually ensure that the
initialization routines are called, since the kernel module
loader in Linux pays no attention to the ELF .init section.
We accomplished this by clever use of preprocessor
macros, that change the definition of the module
initialization functions, module_init and module_exit.

GNU g++ registers the exception table and the stack
frame layout on module load, but the user level C++ ABI
implementation does not process it in any way. Thus the
first time an exception is thrown in or through a module
the information must be processed, which includes
sorting the stack frame info in program counter order
using heap-sort. This means that throwing the first
exception is quite expensive. For our kernel level C++
ABI implementation we have opted for processing this
information at module load.

These additions to the kernel are available as a kernel
patch and the size of it is negligible compared to the rest
of the kernel. Total size of the Linux kernel (excluding
blanks and comments) is around 4 millions LOC, while
the size excluding all drivers and including only the i386
architecture is around 1,2 million LOC. The size of the
C++ ABI is around 7000 LOC. Compiling the C++ ABI
into the kernel image, with exceptions and runtime type
information (RTTI) enabled, increases the kernel image
by 2%;. Note however that we still compiling most of the
C files with gcc, which is not emitting exception frame
info. When compiling the whole kernel with exceptions
enabled, which makes it is possible to throw exceptions

struct task {
volatile long state;
struct thread_info *thread_info;
…
siginfo_t *last_siginfo; /* for ptrace use*/

#ifdef CONFIG_CXX_RUNTIME
struct {

void *caughtExceptions;
unsigned int uncaughtExceptions;

} exa_eh_globals;
#endif
};

Figure 2 - The Linux task struct. Our changes to
support exceptions appear inside the #ifdef shown in
the Figure.

class OSException
{
public:

char* getMessage();
OSException(char* msg,int sev);
int getSeverity();
virtual void report();
enum tSeverity {MINOR=1,MAJOR,FATAL};

private:
char* message;
int severity;

};

class NetworkException : public OSException
{

…
};

class ProntoException : public NetworkException
{

…
};

Figure 3 - Simple exception hierarchy

6

through the whole kernel, the increase in size of the
kernel image is around 10%. This code increase will
however generally not affect the normal flow. Code that
uses exceptions extensively increases slightly more in
size. In extreme cases, when the code does little other
than exception handling we have observed an increase in
size for a single object file of up to 40%.

Evaluation of performance and overheads is given in
Section 6.

5 Using kernel level exceptions

In this section we give few examples of the use of
exceptions within the Linux kernel. These examples are
from our own actual use in our Pronto router project.

In this example we use as an example class hierarchy,
depicted in Figure 3, where each exception corresponds
to a sub-system. The top-level exception class –
OSException – consists of a message, severity and a
virtual method, report, which by default performs a printk
of the message if the severity is MAJOR or FATAL. The
other two exceptions defined, are NetworkException
derived from OSException, and ProntoException derived
from NetworkException.

5.1 System Calls
The most straightforward use of exceptions in kernel
space is in system calls. The Pronto architecture
introduces three new systems calls to the Linux kernel.
New types of packet processors [4] (an abstract data type
for processing in the data-path of the Pronto router) can
be plugged into the operating system at run-time and their
behavior manipulated through type specific system calls
that are dynamically linked through virtual functions. To
promote safety it is beneficial to catch all exceptions
thrown by packet processors.

Figure 4 shows the use of exceptions to guard a systems
call. In this example the sys_pproc_type_call is the entry
point from the system call. It’s only function is to
dispatch a method invocation to thePProcKType, which
is an object in a dynamically loaded module. To guard
the dispatch, the virtual call is performed inside a try
block.

The system call catches all ProntoExceptions and calls
the virtual function report. The packet processors can
throw subclasses of ProntoException, and customize the
report function. Finally all other exceptions are caught
with the second clause. This could include processor-
level errors, if the operating system provides support for

mapping processor level errors into catch-able exceptions
– a topic that we are currently researching for the Linux
platform.

5.2 Using try-blocks in the data path
The Pronto data path consists of a classifier that maps
packets to flows. Each flow is associated with a
forwarding path consisting of chains of packet
processors. Each forwarding path may have multiple
branches. Examples of packet processors include basic
IP forwarding, tunnel entry/exit, NAT functionality, and
more. Packet processors are dynamically added to the
router at run-time.

Figure 5 shows how we employ exceptions in this critical
part of the data path. A try block guards the processing
of a packet as it is sent through the chain of packet
processors associated with the flow they belong to
(identified by the call to the classifier above the try). As
in the previous example, there are two catch statements,
one catching all ProntoExceptions, the other catching all.

It is worth noting in this example, that as new types of
packet processors, say for example IPSec tunnel entry,

asmlinkage int
sys_pproc_type_call(int pptype, int call, void* args)
{

int retval = -ENOSYS;
try {

if (thePProcKType) {
retval = thePProcKType->syscall(pptype, call, args);

} else {
printk(KERN_ERR "pproc not loaded");

}
} catch(ProntoException & exception) {

exception.report();
} catch(...) {

printk(KERN_ERR "Unknown Exception occurred");
}
return retval;

}

Figure 4 - Using exceptions to guard system call
dispatch

int pronto_ip_rcv(struct sk_buff *skb, …)
{

…
flow = ((classifier_module*)classifier)->lookup(skb);
if(flow){

try {
flow->arrive(skb);

} catch(ProntoException & exception) {
exception.report();
kfree_skb(skb);

} catch(...) {
printk("Unknown exception occured");
kfree_skb(skb);

}
}
…

}

Figure 5 - Using exceptions in the Pronto router
forwarding path

7

are introduced they may in turn introduce new subclasses
of the ProntoException, defining a new handler (the
report method). This way the Pronto data path is capable
of performing type specific exception handling for new
dynamically installed types!

6 Evaluation

In this section we evaluate our run-time support via
detailed measurements. We first discuss the cost of
dynamic type checking, followed by an in depth
measurements of the overhead of exceptions.

Our measurements were performed on an Intel Pentium
3,996.859 MHz running the Linux 2.6.6 kernel that has
been patched to include Pronto and the C++ runtime
library.

6.1 Dynamic type checking
The cost of dynamic type checking in C++ is highly
dependent on the method used to encode the runtime type
information in the objects. GNU g++ associates with each
class a type information object that encodes the type of
the class as a mangled string and puts a pointer to this
object in the virtual table for the class. GNU g++ uses
weak symbols to reduce the dynamic type checking to a
pointer comparison, thus avoiding the more expensive
string comparison. Each time a class, containing virtual
functions, is used in a source file, GNU g++ generates the
virtual table, type information object and type name
string as weak symbols and the user space linker ensures
that there is only one copy of this object, which renders
the simple pointer comparison sufficient. However, the
kernel module loader, which in the 2.6 versions of the
kernel is exclusively in kernel space, does not handle
these weak symbols correctly and always relocates
references to weak symbols to the weak definition within
each object file that is being loaded. Therefore multiple
type information objects may exist for the same class and
pointer comparison becomes insufficient when doing
dynamic type check across kernel modules. To avoid this
overhead we have modified the kernel module loader to
handle these weak symbols; the first time a weak symbol
is encountered it is added to the symbol map, and on
subsequent encounters the relocation is done to the first
symbol. This modification is included in the C++ kernel-
level library.

For the purpose of measuring the cost of the dynamic cast
operator we implemented a class hierarchy,
A�B�C�D�E where A is the root of the class
hierarchy, and a method that receives a pointer to A and
performs a dynamic cast to type B*. This table lists the

measurements for the dynamic cast operator when
passing pointers to instances of B, C, D and E
respectively. The results are given in Table 1.

Table 1 - Cost of dynamic cast

Class Cost
(�s)

B 0.11

C 0.16

D 0.21

E 0.26

The results indicate that the cost of each additional level
in a class hierarchy is 0.05 �s. In comparison, when
using string comparison the cost rises more quickly, and
is furthermore influenced by the length of the class name
and common prefixes; by using a common prefix of 2
characters and increasing the class name to 9 characters
we measured the cost of dynamic cast using the lowest
level class (E) to be 0.67 �s.

6.2 Absolute cost of kernel level exceptions
For the purpose of measuring the absolute cost of
throwing an exception, we implemented a kernel module
that throws an integer out of a function, which is caught
in the direct caller.

To put the absolute numbers in context we measured the
performance of the Linux printk function, which is
commonly used in exceptional circumstances to
communicate error messages to users. The time to print a
string of length 6 – printk(“Error\n”) – was measured to
be 18.14 �s.

Although based on the user level implementation
provided with the GNU g++ distribution our kernel level
implementation contains a number of important
optimization. To appreciate the impact of these
optimizations, we first discuss the overhead before our
optimizations, and give the breakdown of the overhead,
showing where our performance improvements are
coming from, building up to the conclusion of the
subsection showing the absolute cost using our optimized
run-time support.

Without the optimization the minimum time duration
from the point of throw to the point of catch measured
was 12.70 �s. Since our usage of exceptions involves
throwing objects we also measured the performance of
throwing the ProntoException mentioned above. The
time from the throw to the catch increased to 13.08 �s in
this case, showing relatively little difference in

8

performance when throwing objects compared to an
integer; the principle difference involves copying of
larger content to the heap area.

To target our optimizations we analyzed the
implementation of exceptions in GNU g++. The
implementation of exceptions in the C++ ABI in GNU
C++ can be characterized by three things: Ease of
debugging, independence of processor architecture and
independence of programming languages. All of these
aspects are potentially harmful for performance and, with
the possible exception of the independence of processor
architecture. We measured in detail the breakdown of the
cost of throwing exceptions. This breakdown is tabulated
in Table 2.

Table 2 - Breakdown of cost of throwing an exception
using the GNU g++ ABI implementation.

Portion %

Allocation and initialization of
resources
(__cxa_allocate_exception,
__cxa_throw)

3.3 %

Locating the handler – first phase of
stack unwinding
(_Unwind_RaiseException)

56.5 %

Actual unwinding – second phase of
stack unwinding
(_Unwind_RaiseException_Phase2)

36.5 %

Installation of the runtime context at
handler (uw_install_context)

2.6 %

Manipulation of the runtime stack of
“active” exceptions
 (__cxa_begin_catch,
__cxa_end_catch)

1.1%

From Table 2 we see that the unwinding of the stack
accounts for 93% of the time. We also observe that the
stack is unwound two times, both time incurring
substantial cost. The first phase, the search phase, looks
for a handler for the exception without restoring the
unwound state. If a handler is found the second phase, the
cleanup phase, commences to restore the state to the stack
frame that contains the handler. The reason for this two-
phased approach is that in the case that no handler is
found the stack frames have not been destroyed and the
debugger can inspect the state of the frame that threw the
exception. However, for our use at kernel level, we don’t
see this cost justified. In fact, we feel that even in user
space the programmer should have the option of having
the compiler optimize this debugging help out of the

code. The first optimization in our run-time support is
therefore to unwind the stack in one phase.

The second optimization we performed concerns the
aspect of the GNU implementation that separates the
exception library in two disjoint sets – the language
independent unwind library, and the language specific
library. The GNU compiler suite implements a set of
languages, including C++, Ada and Java, all of which
have exception facilities. The actual unwinding is generic
for all languages, while the location of a handler within a
specific function is language specific, customizable
through a “personality routine” encoded in the Dwarf2
frame info. The throw operator in C++ is transformed by
g++ into a call to __cxa_allocate_exception, followed by
__cxa_throw, and when that function has finished
initializing the C++ specific parts of the exception object
the generic _Unwind_RaiseException function is called.
This means that when the actual unwinding starts there is
an additional function on the stack that the
implementation will have to unwind. By manually
inlining the _Unwind_RaiseException function into the
__cxa_throw function this is avoided in our library.

The two above mentioned optimizations brought the
performance of throwing of an integer through one
function from 12.70 �s to around 6 �s.

To enhance the performance further the third
optimization improves the mechanisms used to search for
the handler. When an exception is thrown, the C++ ABI
needs to locate the Dwarf2 frame descriptor entry for
each function that the exception goes through, including
the function where the throw is located as well as the
function where the exception is caught. The C++ ABI
accomplishes this by a linear search through a sorted
linked list of objects representing the main program as
well as each dynamically linked library (in the Linux
kernel this corresponds to the kernel image and each
kernel module) followed by a binary search through an
array containing the frame descriptor entries sorted by
program counter. Once the frame descriptor entry has
been located the Dwarf2 instructions are interpreted to
compute the frame state for the function at the current
program counter value. The frame state consists of a state
for each register that specifies if and where the register
has been saved, a rule to compute the canonical frame
address, and a pointer to a “language specific data.” In
the case of C++ the language specific data is the
exception table for the function, if one exists. Our
optimization caches this frame state data in a hash table,
indexed by program counter. When an exception is
thrown the first time through a function, or more
specifically the first time through a certain place in the

9

function, the frame state is computed and subsequently
inserted into the hash table. Subsequent throws through
this place result in a successful lookup in the hash table
which saves the time to locate the frame descriptor entry
and the interpretation of the Dwarf2 instructions. Thus,
the optimization detects the exception paths at runtime
and caches data to speed up the process. The importance
of this optimization increases the more exceptions are
used in the kernel since the time needed to locate the
frame descriptor entry for a function is proportional to the
number of modules that use exceptions and the number of
functions within those modules.

Further optimizations are possible, for example, stripping
the implementation of all language independent code and
or avoiding the allocation of the memory in the kernel-
heap, possibly by allocating special pages for the
exception structures.

However with these three optimizations we have manged
to reduce the the absolute cost of a one level throw from
12.70 �s to 2.14 �s, or about a tenth of the cost of a trivial
printk. As we discuss below this seems quite acceptable
for exceptional events in a number of important
scenarios.

As expected the cost of exceptions is dependent on the
number of stack frames that the exception is thrown
through. Table 3 tabulates how the number of stack
frames affects the cost of throwing an exception.

Table 3 - Absolute cost of throwing exceptions
through a number of stack frames.

Stack Frames Cost (�s)
1 2.14
2 2.52
3 2.85
4 3.21
5 3.59

We observe that cost increases with each stack frame
about 0.35 �s. However, it should be taken into account
that when using other types of error handling techniques
the cost also increases with number of stack frames
traversed.

For comparison, Table 4, tabulates the same cost before
our optimizations. We observe that the increase in cost
for each stack frame in the GNU g++ implementation
without our optimizations is around 2.5 �s. Hence, the
effect of our optimization is even more impressive when
throwing the exception through multiple functions.

Table 4 - Absolute cost of throwing exceptions
through a number of stack frames without our kernel

level optimizations.

Stack Frames Cost (�s)
1 12.70
2 15.43
3 18.12
4 20.46
5 23.09

6.3 The cost of using exceptions in system calls
For the purpose of measuring the difference of
implementing a system call with error codes versus an
implementation that utilizes exceptions we implemented
a system call in Linux that invokes a virtual function that
immediately returns an error code, which the calling
function checks. For comparison we implemented a
version of the system call where the function throws the
same error code, which is subsequently caught in the
callee. The actual measurement is performed in a user
space program with the clock function, since context
switches may occur during the measurement. We
measure the average cost per call when invoking the call
repeatedly (ten million times) to alleviate the lack of
precision inherent in the clock function.

Without exceptions, we measure the average time of the
execution of the system call to be 0.22 �s. In comparison
we measure the average time using exceptions was 2.46
�s. The difference is consistent with our observed cost of
throwing an exception.

Although this is an order of magnitude difference two
observations are important. First, most system calls
perform more expensive useful functions. For those
system calls the 2 �s overhead is small. Second, if the
exception is truly an exceptional event, say occurring
once every 1000 calls the overhead is around 2.3 �s
compared to 220 �s which is negligible. These
measurements do however indicate that exceptions
should not be used gratuitously in these settings and be
reserved for exceptional events.

6.4 The cost of using try blocks in the data path
To test the viability of using exceptions in fine timescale
intensive workload, we measure the cost of using try
blocks in the Pronto data path, as shown in the example
of Section 5.2. We measure packet latency, using 64 byte
UDP packages at a rate of 10000 packets per second
through a router. The router was equipped with a single
993 MHz Intel Pentium 3 processor, having Intel
PRO/1000 Gigabit Ethernet interfaces. The interfaces

10

issue DMA directly. We measure the latency by time-
stamping each packet immediately after the packet is in
main memory and again just before it is transferred to the
output card with DMA.

For comparison we measured the packet latency in the
unmodified Linux kernel, and the packet latency in that
scenario was 4.29 �s. Using Pronto (Linux based) router
compiled without exceptions and RTTI, the observed
packet latency is 4.24 �s. Although the difference is
negligible, it is interesting since Pronto uses classes and
virtual functions. As we have verified in prior work the
use of classes and virtual functions does not incur a
measurable overhead in our scenario. When compiling in
the full C++ runtime support, with exceptions and RTTI
and using try-blocks in the Pronto data path, the packet
latency grows to 4.36 �s – an overhead of 2.8%. This is
consistent with the results of other writers – adding
support for exceptions seems to impose a slight runtime
overhead. Since try-blocks do not emit any code, this can
only be ascribed to less aggressive (or successful)
optimizations performed by g++. Using exceptions
should not have considerable effect on the instruction
cache in the normal flow, since under optimization level
O2, g++ positions all catch handlers at the end of each
method, ensuring that the normal flow is not cluttered
with exception code. This effect is currently partially
achieved in the Linux kernel by hand – the normal flow is
positioned at the beginning of a function, labeled error
handlers are positioned at the end, and goto statements
are used in the normal flow to invoke the error handling
code.

6.5 Throwing exceptions in the data path
To measure the cost of throwing exceptions under
intensive workload on fine timescale, we measure the
impact on thrown in the data forwarding path of the
Pronto router. The setup is as follows. An exception
packet processor is configured to throw an exception for
every packet. The classifier catches the exception which
it handles by sending the packet to the IP-forward packet
processors that injects the packet to the device queue of
the output device. For comparison the same experiment

is performed where the first packet processor returns an
error code rather than throwing the exception. The setup
is depicted in Figure 6.

When throwing exceptions per-packet in this setup, we
measured the packet latency to be 8.8 �s. (Since multiple
branches are typically used in multicast, the packet is
copied with the skb_copy function before sending it down
the second branch, which increases the packet latency).
Returning only an error code we observe the latency to be
5.8 �s. The difference is slightly higher than the
minimum cost of exceptions in the previous subsection,
or 3 �s. However, more importantly this cost if of the
same order as the total latency in normal forwarding
mode (4.36). Of course this implies that it would be
unwise to throw an exception for every packet. However,
even for events that occur once every 100 packets the
cost of using exceptions would have limited impact on
router throughput (less than 1%), and is altogether
negligible for even less frequent events.

As a related example consider using exceptions for fast
recovery upon link failures.

Assuming link failures are rare, the overhead on total
throughput would clearly be negligible. Even when the
failure occurs, the overhead of throwing the exception
would only imply a handful of additional packets lost,
even for very fast links. Moreover, in comparison to the
true cost of handling the exception, routing update, local
flow state updates on all active flows, the absolute cost of
the exceptions is negligible.

Another interesting example to consider is to use
exceptions to handle exceptional protocol conditions
where an ICMP message should be generated. In our
analysis of traffic in our network we determined that the
volume of ICMP traffic is 1 packet per every 3500
packets or 0.03%. If the average packet latency is 4 �s,
the aggregate packet latency is 14 ms and the additional
overhead of 2 �s is negligible in comparison.

7 Discussion

As mentioned before, further optimizations of the
exception handling mechanisms beyond what we
describe above are possible although in some cases a
modification of the compiler would be required. Ideally

Figure 6 - Setup for measuring the cost of throwing
exceptions in the Pronto data path.

11

the GNU g++ compiler would include our optimizations
and allow the programmer to turn them on. Although
user-level programs tend not to be as time critical, doing
so would lower the barrier for exceptions and make them
more useful.

However, in spite of our optimizations, throwing an
exception is a relatively expensive operation in relation to
other atomic constructs, such as function calls and control
structures. Consequently exceptions should not be used
gratuitously and be reserved for exceptional events.

We are interested in investigating the possibility of
mapping processor-level errors to C++ exceptions, to
gain this benefit that the Windows SEH has over the C++
exception mechanism. The ultimate goal is to build a
robust pluggable-kernel. Such mechanism would allow
us to catch all exceptions originating within the
pluggable kernel-modules and to remove such modules
from the kernel to avoid allowing them to crash the
system.

8 Summary

In this paper we have discussed and evaluated our new
C++ kernel level run-time support for Linux, that allows
programmers to use the full power of C++ in kernel space
programming, including global constructors and
destructors, dynamic type checking and exceptions. Our
new kernel-patch works without any modification to the
compiler, and is compiler version-independent, so long as
g++ adheres to the C++ ABI specification for IA-64;
indeed we used the 3.4 version of the ABI with the 3.3
version of the compiler.

Our run-time support builds on the GNU g++
distribution, optimizing the GNU implementation
reducing the performance overhead by an order of
magnitude. The cost of exceptions is low in comparison
to some other error handling operations in the Linux
kernel, such as the printk function, and viable in many
situations of interest.

Finally we have quantified the cost of exceptions which
serves as an important guide for programmers to
determine when the use of exceptions can be justified.

9 Acknowledgements

We would like to thank Pétur Runólfsson for porting the
C++ runtime support from version 2.96 of g++ to
versions 3.x. Also, many thanks to Heimir Þór
Sverrisson, for help on various aspects, including
measurements.

10 References

[1] G. Bracha, J. Gosling, B. Joy, G.Steele. “The Java
Language Specification”. Addison-Wesley, 2000.
[2] B. Stroustrup, The Design and Evolution of C++. Addison
Wesley, Reading, MA, 1994
[3] G. Hjálmtýsson. “The Pronto Platform – A Flexible Toolkit
for Programming Networks using a Commodity Operating
System” in the Proceedings of OpenArch 2000, Tel Aviv,
Israel, March 2000.
[4] G. Hjálmtýsson, H. Sverrison, B. Brynjúlfsson, Ó.
Helgason. “Dynamic Packet Processors – A new abstraction
for router extensibility”.in the Proceedings of OpenArch 2003,
San Fransisco,
[5] John B. Goodenough. “Exception Handling: Issues and a
Proposed Notation”. Comm. ACM 18, 12 (Dec 1975), 683-
696.
[6] John B. Goodenough. “Structured Exception Handling.
Conf. Rec., Second ACM Symp. On Principles of
Programming Languages”, Palo Alto, Clif., Jan. 1975, pp. 204-
224)
[7] B. Liskov, A. Synder. “Exception Handling in CLU”. IEEE
Trans. On Software Engineering SE-5,6 (Nov 1979), 547-557.
[8] B. Liskov. "A History of CLU", Laboratory for Computer
Science, MIT, Technical Report, April 1992.
[9] D. McLaren. “Exception handling in PL/I”. In Proceedings
ACM Conference on Language Design for Reliable Software,
Mar. 1977, 101-14.
[10] James G. Mitchell, W. Maybury, R. Sweet. Mesa
Language Manual, Technical Report CSL-78-1, Xerox
Research Center, Palo Alto, CA, February 1978.
[11] A. Koenig, B. Stroustrup. “Exception Handling for C++”,
Journal of Object Oriented Programming, Vol. 3, No. 2,
July/Aug. 1990
[12] D. Cameron, P. Faust, D. Lenkov, M. Mehta. “A Portable
Implementation of C++ Exception Handling”, Proc. USENIX
C++ Conference, August 1992.
[13] S. Drew, K. J. Gough, J. Ledermann. “Implementing Zero
Overhead Exception Handling”. Tech. Rep. Technical Report
95-12, Faculty of Information Technology, Queensland
University of Technology, 1995.
[14] J. Lajoie. “Exception Handling – Supporting the runtime
mechanism”, C++ Report, Vol. 6, No. 3, March-April 1994
[15] Cristophe de Dinechin. “C++ Exception Handling”. IEEE
Concurrency, October-December 2000, pp 72-79.
[16] J. Hennessy. “Program Optimization and Exception
Handling” , Proceedings of the 8th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, p.200-
206, January 26-28, 1981, Williamsburg, Virginia.
[17] D. Chase. “Implementation of exception handling-II.
Calling conventions, asynchrony, optimizers, and debuggers”,
Journal of C Language Translation, Vol 6, No. 1 , October
1994.
[18] M. J. O’Riordan. “Technical Report on C++
Performance”. JTC1/SC22/WG21 - Papers 2002.
[19] J. L. Schilling. “Optimizing Away C++ Exception
Handling”. ACM SIGPLAN Notices, Vol. 33, Iss. 8 (August
1998) pp. 40-47
[20] H. Komatsu, T. Nakatani, T. Ogasawara. “A Study of
Exception Handling and Its Dynamic Optimization in Java”. In
Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages & Applications,

12

pp. 83-95, Oct. 2001.
[21] Bershad, B., Savage, S., Pardyak, P., Sirer, E. G.,
Fiuczynski, M., Becker, D., Eggers, S., Chambers, C.,
"Extensibility, Safety, and Performance in the SPIN Operating
System," Proc. 15th SOSP, Copper Mountain, CO, Dec. 1995,
267-284.
[22] M. Pietrek. “A Crash Course on the Depths of Win32TM
Structured Exception Handling”. Microsoft System Journal,
January 1997.
[23] S. Niezgoda, L. Holt, D. Wojciech. “Some assembly
required: NT’s structured exception handling”. BYTE 18, 12,
pp. 317-322, 1993.
[24] J. Lang, D. Stewart. “A Study of the Applicability of
Existing Exception-Handling Techniques to Component-Based
Real-Time Software Technology”. ACM Trans. on
Programming Languages and Systems, Vol. 20, No. 2, March
1998,pp. 274-301.
[25] “Itanium C++ ABI”. http://www.codesourcery.com/cxx-
abi
[26] “C++ ABI for Itanium: Exception Handling”.
http://www.codesourcery.com/cxx-abi/abi-eh.html
[27] Tool Interface Standards (TIS) "DWARF Debugging
Information Format Specification Version 2.0". TIS Committee
May 1995

